The handle http://hdl.handle.net/1887/22846 holds various files of this Leiden University dissertation.

Author: Wang, Kuo-Song
Title: Small scale kinematics of massive star-forming cores
Issue Date: 2013-12-10
Propositions

belonging to the thesis

Small scale kinematics of massive star-forming cores

1. 17O and 34S submillimeter lines are good tracers of turbulence in massive star-forming cores, whereas CH$_3$CN is a good molecule to hunt for rotating structures around forming massive stars.
 (Chapter 2)

2. The proto-Trapezium cluster W3 IRS5 provides an excellent testbed for theories of massive star formation.
 (Chapter 3)

3. Hot core molecules betray which component in a complex star-forming region currently forms massive stars.
 (Chapters 3 and 5)

4. Late O-type stars can form through disk accretion like Solar-type stars.
 (Chapter 4)

5. Feedback and magnetic fields can regulate the kinematics of circumstellar matter around young forming massive stars.
 (Chapters 4 and 5)

6. Good ground-based submillimeter observations require the right amount of sunlight, oxygen, and water.

7. ALMA provides answers, followed by questions.

8. Low-mass star formation sets out the path for high-mass star formation.

10. Smart computers make users lazy.

11. Breaking degeneracies of models requires both logic and imagination.

12. Finding a balance between quality and quantity is an art.

Kuo-Song Wang
Leiden, December 10, 2013