The handle http://hdl.handle.net/1887/22313 holds various files of this Leiden University dissertation.

**Author:** Doorenbosch, Marieke  
**Title:** Ancestral heaths: reconstructing the barrow landscape in the Central and Southern Netherlands  
**Issue Date:** 2013-11-21
Chapter 13

Ancestral heaths: understanding the barrow landscape

In Chapter 8-12 several case-studies have been described and discussed. In this chapter these chapters will be summarized and interpreted in relation to the role of barrows in the landscape.

13.1 The barrow landscape

13.1.1 What did the barrow landscape look like in the central and southern Netherlands during the 3rd to 1st millennium cal BC?

In Chapters 8-12, 97 barrows and 11 urnfield barrows have been discussed in 5 regions on the Pleistocene soils in the central and southern Netherlands. It was concluded that all barrows were built in open spaces that were covered with heath vegetation. Barrows were built in open spaces that varied in size from small, with an average distance to the forest (ADF) of 50-100 m, to rather large (ADF=300-500 m), although the latter were only been found in the relatively young Middle-Late Iron Age barrows of the Echoput. Besides the barrows that were discussed in the case-studies (Chapters 8-12) palynological data are known from 21 more barrows in the central and southern Netherlands (see Appendix I) which show that these barrows too, were built in heaths. Nevertheless, palynological data are only available for a small part of the barrows that are still present in the Netherlands. As has been shown in figures 3.1, 8.1b, 9.1b, 10.1b, 11.1b-d and 12.1b there are numerous barrows in the investigated regions. Bourgeois suggests that only a fraction of the barrows has been preserved, and that the original number of barrows in the Netherlands was higher (Bourgeois 2013, 40). All investigated barrows were built in heath vegetation and it is therefore probable that the non-investigated barrows on the Pleistocene coversand areas in the Netherlands were built in a setting featuring heath vegetation as well. As a consequence, the Dutch barrow landscape must have been dominated by patches of heathland. The open spaces seem to be small, however, and this in itself could be misleading. Many barrows are often situated close to other barrows and sometimes forming long alignments.

It is therefore likely that many barrows were not built in their own small patch of heathland, but clustered in larger open spaces that were long and narrow. This has already been found to be the case for the oldest barrows. For example at Renkum (Chapter 9) a long alignment of barrows can be seen. Not all barrows in this alignment have been dated, at least 12 barrows can be placed in the late Neolithic A period. Assuming that these barrows were all built in heath vegetation, as has been demonstrated for four of them, it is likely that the open spaces were connected to each other, forming a long-stretched heathland area with a length of about 4.5 km (see figure 13.1a-c). These long-stretched heath areas could possibly be seen as corridors in the landscape, although this research has only focussed on the barrow landscape and not on the greater landscape. Other examples of this barrow alignment can also be seen at Vaassen-Nierssen (Chapter 8, see figure...
Figure 13.1a-b. Barrow alignment of Renkum at two consecutive phases Late Neolithic A and Late Neolithic B. The modeled heath area around each barrow is indicated. Based on digital elevation model of the AHN (copyright www.ahn.nl). Figure after Doorenbosch (2013), figure 11.a-b. Figure by Q. Bourgeois and M. Doorenbosch.
Figure 13.1b.

- Unexcavated or undated mounds
- Older barrows
- LN A or B barrows
- LN B barrows
- Modelled heath area

m NAP
- 60 m
- 0 m
Figure 13.1c. Barrow alignment of Renkum, situated in a (hypothetical) long-stretched heath area surrounded by forest. The vegetation reconstruction is based on palynological data from barrows. An exact reconstruction of the forest area is therefore not possible (indicated by the question mark), since barrows are not present in those areas. The figure is based on digital elevation model of the AHN (copyright www.ahn.nl).
Figure 13.2a-b. Barrow alignments of Vaassen-Niersen at two consecutive phases Late Neolithic A and Late Neolithic B. The modeled heath area around each barrow is indicated. Based on digital elevation model of the AHN (copyright www.ahn.nl). Figure after Doorenbosch (2013), figure 10.a-b. Figure by Q. Bourgeois and M. Doorenbosch.
The formation of barrow alignments have been extensively investigated and discussed by Bourgeois (2013). He has found many other examples of barrow alignments, indicating that this was a fairly common way to spatially order burial mounds in the barrow landscape. Not all barrows, however, were built into such alignments. Alignments were mainly a feature of barrows constructed during the Late Neolithic A, while from the Late Neolithic B onwards barrows are also found outside the alignments at presumably more random places in the landscape (Bourgeois 2013). These dispersed barrows were built in heath as well as has been shown at for example Toterfout-Halve Mijl (Chapter 11). Altogether, the barrow landscape must have been dominated by patches of heath, which all contained one or more barrows, and which were possibly often connected to each other, forming corridors in the landscape.

Figure 13.2b. Barrow alignment of Vaassen-Niersen during the late Neolithic B.
Although dominated by heath, forest was also part of the barrow landscape. This forest can be divided into two main components. In the lower and wetter parts of the area extensive alder carrs could be found. At the drier locations a mixed oak forest was present. This forest was probably fairly open and consisted mainly of *Quercus*. *Tilia* was part of the forest as well, especially during the Neolithic and Bronze Age. *Fagus* appeared later. *Fagus* could be noticed in the Bronze Age period at Toterfout-Halve Mijl. It had partially replaced *Tilia* in the Iron Age period as shown at the Echoput barrows (chapter 8) and at Oss-Zevenbergen (chapter 12). *Corylus*, a light demanding tree, was dominant close to the barrows and profusely growing at the edge of this forest.

Figure 13.2c. Barrow alignments of Vaassen-Niersen, situated in a (hypothetical) long-stretched heath area surrounded by forest. The vegetation reconstruction is based on palynological data from barrows. An exact reconstruction of the forest area is therefore not possible (indicated by the question mark), since barrows are not present in those areas. The figure is based on digital elevation model of the AHN (copyright www.ahn.nl).
As has been explained in Chapter 2 it was previously thought that differences in barrow landscapes were culturally linked (Waterbolk 1954, van Zeist 1967a). Casparie and Groenman-van Waateringe already concluded that this assumption could not be true and that differences between sites were caused by differences in soil type and hydrology (Casparie and Groenman-van Waateringe 1980). They emphasized the uniformity of the barrow landscape for all barrows. This uniformity has been confirmed by this research, where (part of) the data collected by Casparie and Groenman-van Waateringe have been supplemented and re-interpreted.

A mosaic managed heath open-forest passage landscape

As has been extensively discussed in Chapters 8-12 the heath vegetation the barrows were built in must have been managed to persist. Management activities could involve grazing (or mowing), burning and/or sod-cutting (Stortelder et al. 1996, 287). Indications for large scale sod-cutting have not been found, but sod-cutting must certainly have taken place as sods were used as construction material for the burial mounds and could therefore have contributed in the maintenance of the heath vegetation. Grazing has been indicated in most of the case-studies. During the Neolithic, prehistoric man in the Netherlands switched from hunter-gatherer to farming activities, including crop cultivation and animal husbandry. Faunal evidence from shows that the livestock of farming communities mainly consisted of cattle and sheep (Fokkens 2005a, 409, 427; Brinkkemper and van Wijngaarden-Bakker 2005, 493). The heath in the barrow landscape was consequently most likely being grazed by these animals (see figure 13.3a-b). The number of livestock belonging to late Neolithic farming communities has not been estimated, but for the Middle Bronze Age B has been suggested that a livestock of up to 30 animals could be kept per household. It has been suggested that these animals were mainly grazing at natural pasture areas in the stream valleys (IJzereef 1981, Fokkens 1991, 2005a).

Another possibility is that they were grazing the barrow heath areas. To maintain a heath area about 1 sheep per hectare and/or 1 head of cattle per 5-6 hectare is required. The heath area around a barrow with an estimated ADF of about 100 m could be simplified to a (hypothetical) circular patch of heath with an estimated radius of 100 m, indicating an area of about 3 ha. Each barrow requires then about 3 sheep or 0.5 head of cattle to maintain this heath area. It

Figure 13.3a-b. 13.1a: Grazing sheep at the Tafelbergheide, a heathland area near Huizen (the Netherlands). 13.1b: Grazing cattle at the Zuiderheide, a heathland area near Laren (the Netherlands).
has been estimated that in the area of Ermelo 52 barrows were built in the Late Neolithic A, 26 barrows in the Late Neolithic B, 7 barrows in the Early Bronze Age and 48 barrows in the Middle Bronze Age. This assumes that in total about 134 barrows were present at Ermelo in the Middle Bronze Age (Bourgeois 2013, table 8.1, p. 178). Assuming that all barrows were situated in heath vegetation in the Middle Bronze Age, this implies a total estimated heath area of about 420 ha. To maintain such a heath area about 420 sheep are required and/or 70 head of cattle. Alternatively, when assumed that one household kept 20 head of cattle and 10 sheep, 3-4 households were able to maintain the heath. When the average ADF in an area for each barrow is 250 m, around 2630 ha of heathland should be maintained, requiring 20 households with each 20 head of cattle and 10 sheep. This implies that several households, forming heath communities, must have worked together to maintain the heathland.

Grazing in relation to the barrow landscape is also mentioned in barrow research from for other regions in Europe. Andersen showed that barrows in West Jutland (Denmark) were built in open places that were used as pasture (Andersen 1996-97). The oldest barrows (3500-3300 cal BC) were built in open places in birch woodland that was grazed and from the Early Middle Neolithic barrows (3300-3100 cal BC) onwards they were often built in heathland that served as pasture. Bunting and Tipping concluded for a Middle Bronze Age barrow cemetery (1500-900 cal BC) in Orkney (Scotland) that the burial mounds were constructed on pasture land (Bunting and Tipping 2001).

Burning is the third heath management method. Indications for burning have only been found in a few case-studies in this research by the recording of charcoal that was probably not just related to the burial itself. At the Echoput and Oss-Zevenbergen for example (chapter 8.1 and 12) small fragments of charcoal were found throughout the entire profile underneath the barrows. Karg showed for a barrow in Western Jutland (Denmark) dating to the 14th century cal BC that it was built in a heathland where burning had taken place. In addition the heathland had been managed by grazing and sod-cutting (Karg 2008).

It should be noticed that the heath management activities described above, especially grazing, might not have been practiced by prehistoric man with the aim of managing the heath. They might just have been carried out by the barrow builders as part of their daily (agricultural) activities. Managing the heath at the
same time might just have been incidental. Nevertheless, whether deliberately managed or as an additional consequence of other activities, heath vegetation was a very important if not the most important component of a barrow landscape. To conclude, the barrow landscape must have been a very characteristic landscape. A landscape that could perhaps best be described as a mosaic managed heath open forest-passage landscape.

13.1.2 What was the history of the barrow landscape before the barrows were built?

In five cases it has been shown that this heath vegetation was already present some time before the barrow was built by pollen diagrams derived from the soil profile underneath the barrow (2 barrows at the Echoput, chapter 8.1; Oss-Zevenbergen barrow 2, 7 and 8 and the Chieftain’s Grave, chapter 12.1). In other cases the presence of diverse herbal vegetation suggests that the area must have been open for some time. Otherwise this vegetation would not have had the chance to get established. No indications have been found that the open space was created recently before a barrow was built. Some barrows were built on top of an Umbric Podzol (Dutch classification: Moderpodzol; Echoput, chapter 8.1; Oss-Zevenbergen Barrow 2, Chapter 12), which is common underneath forest vegetation. It has been suggested that this could be an indication that heath vegetation had not been present for a very long time, since underneath heath vegetation eventually a Carbic Podzol (Dutch classification: Humuspodzol) would develop (de Kort 2009). It should be noted that this is only relative to the length of time soil development can take; heath vegetation can transform an Umbric Podzol into a Carbic Podzol in approximately 250 years (Andersen 1979) which is rather long relative to a human life. To conclude, in most cases the open spaces were present well before the construction of the barrow and it is therefore unlikely that they were created specifically for funerary purposes. When, how and why the clearings have been created is unknown. The open spaces might have originally been natural open spaces in the forest (see 2.3.1) and turned into heathland by human influence. They might also have been man-made clearings from the start. It is also not easy to reconstruct what the open spaces have been used for prior to the barrow building. Possible traces of abandoned settlements have been found underneath a barrow in only a few cases (Vaassen, chapter 8.1; Putten, chapter 8.4; Stroe, chapter 8.10) and only in some cases barrows were possibly (although questionable) constructed on former arable land (Toterfout-Halve Mijl barrow 12 and 18, chapter 11.1; Eersel, chapter 11.6). Besides, Casparie and Groenman-van Waateringe (1980) conclude that barrows were seldom constructed on or close to arable land that was in use when the barrows were built, a conclusion that was confirmed by the present research. It is therefore not likely that the barrow builders had a preference for (recently abandoned) settlement sites and/or arable fields. On the other hand it is clear that in all cases prehistoric man must have been present at the sites prior to the barrow building, since at least some management was required to maintain the heath vegetation. Probably most open spaces were used as pasture already before the barrows were built, since grazing is indicated in several cases (Echoput, section 8.1; Oss-Zevenbergen Chapter 12).

13.1.3 What does this mean?

The Late Neolithic landscape in the southern and central Netherlands is often seen as dominated by a fairly closed forest. As has been described in Chapter 2, deciduous forest is in general assumed to be the natural landscape in the Netherlands that had developed since the start of the Holocene. During the
Neolithic prehistoric man started to interfere with the landscape when they started to clear the forest to expand their agricultural activities. This was assumed to have happened only at local scale, in the close surroundings of a settlement site (Waterbolk 1954, Groenman-van Waateringe 1978). In general the open spaces were small and did not have a great impact on the landscape yet. Casparie and Groenman-van Waateringe (1980) concluded from their research that large open areas did not yet occur during the Neolithic in the central Netherlands. During the Bronze Age and Iron Age the Dutch landscape was transformed into a cultural open landscape, with heath and fields replacing the forest. During the Neolithic period man also started to build barrows to bury their dead. Neolithic barrows were pictured as being in small man-made open spaces in the forest, but it is not clear how these fitted in the landscape organization at large. The results described in Chapters 8-12 suggest that the landscape was probably already more open than previously thought. Based on the reconstructions from barrows the landscape must certainly have been open. All barrows were built in heath vegetation and the surrounding forest was open in character. Barrows were numerous and plentiful from the earliest Neolithic period. All these barrows being built in heath paint a different picture of the landscape than a closed forest with some small, open spaces.

For the Bronze Age it has long been thought that a barrow’s location was determined by the location of the settlement (Roymans and Fokkens 1991). This theory was mainly based on sites like Elp, where a barrow was located close to Middle Bronze Age houses (see figure 13.4). Bourgeois and Fontijn showed that this theory could not be confirmed (Bourgeois and Fontijn 2008). Most barrows predate the Middle Bronze Age houses, and settlements dating to the late Neolithic and Early Bronze Age, the period in which most barrows were built, have rarely been found (see also 2.3.2). In fact, it is not known where the people who built the barrows and who were buried in the barrows lived. Settlements have rarely been found close to barrows (Bourgeois 2013). In addition, this research has shown that palynological data seldom show the presence of arable fields in the near surroundings of a barrow, which are generally assumed to be located close to settlements (van Gijn and Louwe Kooijmans 2005, 338-340).

The barrow landscape was a managed landscape, with numerous patches of heath. As was previously thought that prehistoric man just started to interfere with the landscape during the Neolithic, these managed barrow landscapes assume large scale control of the landscape by man. And even long before the barrows were built, prehistoric man may have already overexploited some areas, as indicated by very early sand-drifting events at Oss-Zevenbergen in de Middle Neolithic (Chapter 12), the Schaijksche heide around 4700 cal BC (Chapter 11) and the Laarder Wasmeren area around 4000 cal BC (Chapter 10). Although the cause of these sand-drifts is unknown, they show that the landscape was open and that heath vegetation was already present by then. This is further indication of the presence and activity of man and implies a landscape that was maintained by this activity of man and even perhaps overexploited by him.

To summarize, despite not being built very close to settlements, the barrows seem to be integrated into the everyday life of prehistoric man. The barrow landscape was a managed landscape, which most likely was at least partially maintained by grazing, and seems to form as such part of the economic zone of the people living in the area. It is however not clear where the settlements of these communities were located. The evidence for settlements is elusive for the late Neolithic and the first half of the Middle Bronze Age. It seems likely that settlements were located not too far away, at ‘grazing’ distance from the barrows.
Grazing grounds, ancestral grounds?

One of the questions this research is trying to answer is whether the barrow builders had a preference for ancestral grounds to place their mounds. Based on the data that are available now, discussed above and in the previous chapters, this question can most likely be answered affirmatively. In general barrows were built on grazing grounds. Grazing took place concurrently and prior to the barrows being built. The barrows that were investigated were never built in areas that were recently cleared and it is not very likely that the barrow builders created heath areas especially for the construction of a burial mound. Instead, all barrows were built in areas that had been in use by prehistoric (heath) communities for a long period of time. These communities might very well have consisted of the ancestors of the people who built the barrows. The heathland areas where barrows were built in can be considered as ancestral heaths: not only did they serve as burial places for ancestors, they had also been used by these ancestors prior to the barrow building. The builders of the barrows built on the investment of their ancestors.

13.1.4 What was the role of barrows in the landscape?

Barrows were often located in alignments in long-stretched heath areas. It is not hard to imagine that visibility must have played an important role in the placement of the mounds as has already been suggested in Chapter 2. From one mound the next mound could be seen and so on. Such corridors/passageways in the landscape must have been an impressive sight. Bourgeois (2013, Chapters 6 and 8) investigated visibility for several barrow alignments and clusters. He performed view-shed analyses to determine whether barrows were built on visible places in the landscape. How visible was a barrow in the landscape and what part from the landscape could be seen from a barrow? Besides the land relief (elevation, slope and orientation of terrain features) the vegetation and especially the trees are determining factors on the degree of visibility. The vegetation data that were derived from the pollen analyses described in Chapter 8-12 provided valuable information in this respect. Models have been developed to get a better grip on the relation between pollen spectra and the corresponding vegetation abundance. In Chapter 7 these models have been applied to barrow pollen spectra to be able to improve our visualization of a barrow landscape. Based on these models, barrows in the view-shed analysis were placed in (hypothetical) circular heathland areas with an average radius of 250 m. In addition the vegetation reconstructions have shown that alder carr made up a considerable part of the forest in the lower and wetter surroundings of all investigated barrows. For the view-shed analyses alder carr with a height of 15 m was placed at locations with high groundwater level, taking the recent lowering of groundwater by modern canalization and use of groundwater into account (Bourgeois 2013, 132). The dry Quercus forest obviously would also be of influence and although its exact location cannot be determined a forest with a height of 30 m was placed at the places that were not covered with heath or alder carr to get a rough impression of the visibility of barrows. Bourgeois concluded that barrows were more visible than their environment, but not all barrows were equally visible from their environment. Some barrows were highly visible and could probably be seen from long distances, while other barrows were only visible from the edge of the heath area. Also in alignments visibility varied between barrows. Some barrows could be seen from anywhere in the alignment, while others could only be seen from the barrow next to it and still others appeared only at the skyline from specific positions in the landscape. As Bourgeois (2013, 156) puts it: “Especially in the case of the alignments, visibility was manipulated in order to reveal a succession of monuments.” Although the degree of visibility seems
to have differed between barrows it cannot be denied that visibility must have played an important role in the placement of barrows. Even when a barrow could only be seen when entering the heath area it was built in, it was probably still an eye catcher within that heath area. Visibility played an important role in the placement of the barrows. Their visibility might have been enhanced when the sods for barrow construction were taken in the direct environment of the barrow, as has been shown at the Echoput (Section 8.1). These barrows were located on one of the highest places in the environment in an open area that was covered with heath vegetation, while the direct surroundings were completely stripped from vegetation. This might have been undertaken to emphasize their characteristic sight in the landscape.

Barrows and the importance of visibility have also often been discussed in barrow research outside the Netherlands. Early Bronze Age Barrows in Thy, Denmark, were all built in a rather treeless landscape that was used as pastureland (Andersen 1996-97). Hannon et al. showed that five Bronze Age mounds (1800-500 cal BC) at the Bjäre peninsula (southern Sweden) were built in an open landscape that was probably grazed (Hannon et al. 2008). They concluded that these barrows were probably designed to be visible in the landscape. Also Downes suggested that the location of barrows in Orkney (Scotland) were probably related to visibility (Downes 1994). Drebrodt disagreed with the theory that all barrows were built in an open landscape (the landscape openness hypothesis; Drebrodt et al. 2009). He showed that some barrows were built on hilltops while the hill flanks were probably covered with forest, since no soil erosion had taken place at these hills. However, he also mentions the possibility of a well suited system of pasture that could have maintained a vegetation cover preserving the hill from soil erosion. Fyfe rejected the landscape openness hypothesis as well (Fyfe 2012). He stated that there is no single blueprint for the vegetation composition on and around a barrow site and that barrows were built in landscapes that varied from very open to forested. He also mentions however, that barrows were built in the relatively most open places in the environment. Casparie and Groenman-van Waateringe (1980, 61) conclude: “The environment in the immediate vicinity of a barrow varied from only slightly degraded forest to extremely degraded, heath-rich vegetations, with all possible intermediate stages.” The research in this thesis shows that barrows were built in open spaces that varied in size from small to large. Besides, it was shown that visibility could still have played a role in small open spaces especially while they might have been connected forming a narrow long-stretched corridor heathland. In addition, a forested site does not necessarily imply that visibility played no role in the barrow building. Especially when multiple barrows were built in a region small views might even have emphasised their special place in the landscape (figure 13.5). Visibility was maintained while the heathland was managed. This could have been a ritual activity purely to preserve the visibility of the barrows in the landscape, it is however much more likely that the management also had an economic aspect. As has been discussed above and in the Chapters 8-12 grazing was probably involved and to maintain such extensive areas of heathland considerable livestock was necessary. It is therefore expected that the barrow landscape was in use as part of the agricultural organization of the prehistoric farmers.

To conclude, the role of barrows in the landscape of the central and southern Netherlands seemed to be twofold. On the one hand they were assigned a special place in the landscape, separate from settlements and fields, where visibility seemed to have played an important role. On the other hand they were integrated into everyday life, while they formed part of the economic zone of the people living in the area. Prehistoric landscape undergoes impressive changes from the Neolithic
to the Iron Age (and further on), when prehistoric man gradually changed it to a cultural landscape. The heaths of the barrow landscape, however, were very stable elements in this changing landscape that existed as such for thousands of years.

13.2 The heath open-forest passage landscape as part of the Dutch prehistoric landscape

Peat and lake sediments have been proven to be good pollen preservers, as has been explained in section 2.2.1. Therefore, information about the Dutch prehistoric landscape is mainly derived from palynological analyses of peat and lake sediments. Pollen in peat and lake sediments is assumed to represent the regional vegetation. However, this mainly accounts for the arboreal pollen component. Most herbal pollen does not travel long distances and therefore open places in the region of the peat or lake will be underrepresented or not be recorded at all. As has been shown by the palynological analyses of the Venloop and Slabroek (see chapter 6.1) a peat diagram does not necessarily represent the vegetation composition of a burial complex at only 1 km distance. It is therefore not realistic to generalize the landscape that was shown by peat and lake sediment analyses, since they only represent a specific type of landscape. For Late Neolithic times, when barrows were started being built, the general view of the Dutch landscape is that it is dominated by deciduous woodland (see 2.1). This research has shown that this view should be reconsidered and that the landscape was probably already more open than previously thought. In addition, palynological analyses of barrows only show a particular part of the landscape and the landscape picture drawn from this research can certainly not just be extended to for example settlements sites, neither can it be applied to sites with completely different environmental circumstances like wetland sites. Other researchers have argued that palynological sampling of peat and lake sediments alone are not suitable for a detailed vegetation reconstruction. Behre (1986) for example has reconstructed the development of landscape and prehistoric habitation within an isolated (surrounded by bogs) prehistoric settlement area called Flögeln (Northwest Germany) by creating a dense network of ten pollen diagrams. Palynological data were collected from
a large raised bog just north of the settlement area, which provided the history of a regional vegetation development. However, habitation phases were hardly reflected in these diagrams. Only pollen diagrams derived from kettle-hole bogs within the settlement area showed a detailed overview of the several habitation phases in the area. Behre concluded that many pollen diagrams only show part of the (settlement) landscape, even when a settlement area was situated very close to the sample location. To get a most complete reconstruction of landscape and habitation development sampling at multiple locations in the area is necessary. Also Groenewoudt et al. stated that the distance of most peat remnants to settlement areas is too large to provide reliable data about them (Groenewoudt et al. 2007). They collected palynological data from (man-made) pools and wells in or close to Late Bronze Age to Medieval settlements in a small-scale cover sand area in the eastern part of the Netherlands to get a more detailed understanding of the vegetation development in that settlement area. They concluded that during the Neolithic the settlements were situated in natural open spaces as islands in a forest landscape, after which rapid deforestation reversed the landscape structure with islands of woodland in a cultivated landscape. This was already established during the Iron Age, much earlier than suggested by most peat pollen diagrams. The data used in their research still do not provide a complete picture of the total landscape, since these samples were all taken in a settlement setting and as a consequence all represent a by humans influenced vegetation composition. Nevertheless this research is another confirmation that peat and lake pollen diagrams do not necessarily reflect a complete image of a landscape, since they might miss valuable local information.

The prehistoric landscape did not just consist of deciduous woodland, neither does deciduous woodland with settlement islands show the whole picture or is the barrow heathland landscape representative for the total landscape. To get a complete image of a landscape sampling of multiple locations in different settings is necessary. The sampling of barrows has proven to be a valuable addition to reconstruct the landscape at a more local level.

In conclusion, the barrow landscape was a landscape dominated by heath. Heath communities worked together for many generations to maintain these heathland areas. These heaths were not only the final resting places for their ancestors, but they had also been used and maintained by these ancestors. These ancestral heaths were very stable elements in the landscape and were kept in existence as such for thousands of years, forming the most important factor in structuring the barrow landscape.