The handle http://hdl.handle.net/1887/22043 holds various files of this Leiden University dissertation.

Author: Anni, Samuele
Title: Images of Galois representations
Issue Date: 2013-10-24
For \(n \) and \(k \) be positive integers, let \(S(n, k)_\mathbb{C} \) be the complex vector space of weight \(k \) cusp forms on \(\Gamma_1(n) \). In these propositions \(\mathbb{T}(n, k) \) will denote the cuspidal Hecke algebra of level \(n \) and weight \(k \), i.e. the \(\mathbb{Z} \)-subalgebra of \(\text{End}_\mathbb{C}(S(n, k)_\mathbb{C}) \) generated by the Hecke operators \(T_p \) for every prime \(p \) and the diamond operators \(\langle d \rangle \) for every \(d \in (\mathbb{Z}/n\mathbb{Z})^* \). Let \(\overline{\mathbb{Q}} \) denote an algebraic closure of the field of rational numbers \(\mathbb{Q} \).

1. Let \(E \) be an elliptic curve over a number field \(K \) with \(j \)-invariant different from 0 and 1728, and let \(\ell \) be a prime number. Suppose that \(E \) admits an \(\ell \)-isogeny locally at a set of primes with density one and \(E \) does not admit an \(\ell \)-isogeny over \(K \). Then \(\ell \leq \max \{\Delta, 6d+1\} \), where \(d \) is the degree of \(K \) over \(\mathbb{Q} \) and \(\Delta \) is the discriminant of \(K \) [Corollary 2.3.5].

2. Let \(X_{V_4}(5) \) be the modular curve \(G \backslash X(5) \) obtained by taking for \(G \subset GL_2(\mathbb{F}_5) \) the inverse image of the Klein 4-group \(V_4 \subset PGL_2(\mathbb{F}_5) \). The modular curve \(X_{V_4}(5) \) is isomorphic to \(\mathbb{P}^1 \) over \(\text{Spec}(\mathbb{Q}(\sqrt{5})) \) [Proposition 3.2.1].

3. Let \(n, m \) and \(k \) be positive integers with \(n \) a multiple of \(m \). Let \(\ell \) be a prime not dividing \(n \), and such that \(2 \leq k \leq \ell + 1 \). Let \(f : \mathbb{T}(n, k) \rightarrow \overline{\mathbb{F}}_\ell \) be a morphism of rings and let \(\rho_f : \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \rightarrow GL_2(\overline{\mathbb{F}}_\ell) \) be the unique, up to isomorphism, continuous semi-simple representation corresponding to it. Let \(g : \mathbb{T}(m, k) \rightarrow \overline{\mathbb{F}}_\ell \) be a morphism of rings and let \(\rho_g : \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \rightarrow GL_2(\overline{\mathbb{F}}_\ell) \) be the corresponding Galois representation. Assume that \(\text{cond}(\rho_g) = m \) and that the weight of \(\rho_g \) is minimal. If \(\rho_f \) is ramified at \(\ell \) then \(\rho_f \) is isomorphic to \(\rho_g \) if and only if \(f \) is in the subspace of the old-space given by \(g \) at level \(n \) [Theorem 6.3.6].

4. Let \(n \) and \(k \) be two positive integers, let \(\ell \) be a prime such that \(\ell \) does not divide \(n \) and \(2 \leq k \leq \ell + 1 \). Let \(f : \mathbb{T}(n, k) \rightarrow \overline{\mathbb{F}}_\ell \) be a morphism of rings and let \(\rho_f : \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \rightarrow GL_2(\overline{\mathbb{F}}_\ell) \) be the representation attached to \(f \). Let \(\overline{\tau} : (\mathbb{Z}/n\mathbb{Z})^* \rightarrow \overline{\mathbb{F}}_\ell^* \) be the character defined by \(\overline{\tau}(a) = f(\langle a \rangle) \) for all \(a \in (\mathbb{Z}/n\mathbb{Z})^* \). Assume that \(\rho_f \) is irreducible and that it does not arise from lower level. Let \(p \) be a prime dividing \(n \) and suppose that \(f(T_p) \neq 0 \). Let \(\chi : (\mathbb{Z}/p^i\mathbb{Z})^* \rightarrow \overline{\mathbb{F}}_\ell^* \), for \(i > 0 \), be a non-trivial character. Then \(N_p(\rho_f \otimes \chi) = N_p(\chi \overline{\tau}) + N_p(\chi) \) [Proposition 8.2.4].
5. Let n and k be positive integers and let ℓ be a prime not dividing n such that $2 \leq k \leq \ell + 1$. Let $f : \mathbb{T}(n, k) \to \overline{\mathbb{F}}_{\ell}$ be a morphism of rings. Let us suppose that the representation $\rho_f : \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \text{GL}_2(\mathbb{F}_\ell)$ is irreducible and does not arise from lower level or weight. Let S be the set:

$$S := \{ f(T_p) | p \text{ prime}, p \neq \ell \text{ and } p \leq B(n, k) \} \cup \{ f(\langle d \rangle) | d \in (\mathbb{Z}/n\mathbb{Z})^* \},$$

where $B(n, k) = k/12 \cdot n \prod_{p|n \text{ prime}} (1 + 1/p)$. Then the field of definition of ρ_f is the smallest extension of \mathbb{F}_ℓ containing the elements of the set S [Proposition 9.1.1].

6. Let $p \geq 5$ be a prime number. The equation $x^p + y^p + 129 z^p = 0$ has no solution with $x, y, z \in \mathbb{Z}$ and $xyz \neq 0$.

7. Let E be an elliptic curve over a number field K, of degree d over \mathbb{Q}, such that $j(E) \notin \{0, 1728\}$. Let ℓ be a prime and suppose $\sqrt{(-1)\ell} \in K$. Assume that E/K admits an ℓ-isogeny locally at a set of primes with density one but not globally. Suppose that $\mathbb{P} \rho_{E, \ell}(\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}))$ is not conjugated to a dihedral group. Then

- if $\ell < 16d+1$ then $\mathbb{P} \rho_{E, \ell}(\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}))$ is isomorphic to \mathbb{A}_4;
- if $\ell < 20d+1$ then $\mathbb{P} \rho_{E, \ell}(\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}))$ is isomorphic to either S_4 or A_4;
- if $\ell < 24d+1$ then $\mathbb{P} \rho_{E, \ell}(\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}))$ is isomorphic to either S_4 or A_4 or A_5.

8. Every odd irreducible 2-dimensional Artin representation of $\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ has conductor greater or equal to 23.

9. Maths is in every kitchen, on every recipe card. The mathematics of cooking often goes unnoticed, but in reality, there is a large quantity of maths skills involved in cooking. Take a lemniscate, chop a piece off, pull it out and twist it around: in this way you obtain a shape of pasta which is more suited than others to dense sauces.

10. “Did you notice that this shop is called The Four Fours. This is a coincidence of unusual importance.” “A coincidence? Why?” “The name of this business recalls one of the wonders of calculus: using four fours, we can get any number whatsoever.”

$$10 = \frac{44 - 4}{4}; \quad 11 = \frac{44}{\sqrt{4} + \sqrt{4}}; \quad 113 = \Gamma(4) - \frac{4! + 4}{4}.$$