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Chapter 4

Refinements and computations

4.1 Introduction

We recall the following definition from chapter 3.

Definition 4.1. Let S be a set of primes.

(i) For (dp) ∈
∏

p∈S Q∗p and c ∈ Q∗, we call Ec a good twist of E with

respect to (dp) and S if for each p ∈ S we have c ∈ dpQ∗2p , and Ec(Q)
is dense in

∏
p∈S E

c(Qp).

(ii) We say E has good twists if, for all (dp) ∈
∏

p∈S Q∗p, there is c ∈ Q∗
such that Ec is a good twist of E with respect to (dp) and S.

As before, if S = {p} for some prime p, and if E has good twists with
respect to (dp) and S, we will also say that E has good twists with respect
to dp and p. If E has good twists with respect to S, we will also say that E
has good twists with respect to p.

4.1.1 Goal of this chapter

In this chapter we will establish criteria for an elliptic curve E over Q to
have good twists with respect to a prime p. In view of Theorem 3.20, the
existence of good twists of E with respect to p implies that the rational
points on Km(E × E) lie p-adically dense. The crucial idea underlying
all criteria established in this chapter is a construction of Jean-François
Mestre [22], to be introduced in section 4.2.1. In section 4.7, we will use
these criteria to perform a computer search for pairs (E, p) for which it is
true that the rational points on Km(E × E) lie p-adically dense.
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4.1.2 Computer calculations

For an elliptic curve E over Q whose j-invariant is different from 0 and 1728,
we will introduce the notion of a lucky prime number p for E in Definition
4.34. Prime numbers that are not lucky for E are called unlucky for E. The
unlucky prime numbers include the prime numbers less than or equal to
7, and the primes for which E has bad reduction. It will be very easy to
verify, using a Computer Algebra System, whether or not a prime number p
is lucky for E. We will show in Proposition 4.35 that if p is lucky for E, and
if X = Km(E × E), then X(Q) lies dense in X(Qp). We have also created
computer code (described in section 4.7) that computes the lucky prime
numbers < 2000 for all elliptic curves E over Q given by y2 = x3 + ax+ b,
where a and b are integers such that −5 ≤ a ≤ 5 with a 6= 0, and 0 < b ≤ 5.
Doing this, we have obtained the following result.

Theorem 4.2. Let S5,5 be the set of elliptic curves E over Q given by
y2 = x3 + ax + b, where a and b are integers such that −5 ≤ a ≤ 5 with
a 6= 0, and 0 < b ≤ 5. Then for all E ∈ S5,5 there are at most 8 prime
numbers p with 7 < p < 2000 which are unlucky for E. Furthermore, for all
prime numbers p such that 109 < p < 2000 and all E ∈ S5,5 we have that if
p is unlucky for E, then p is a prime of bad reduction for E. If E ∈ S5,5,
and X = Km(E × E), and p is a prime with 109 < p < 2000 for which E
has good reduction, then X(Q) is dense in X(Qp).

The proof of Theorem 4.2 will be given at the end of section 4.7.

4.2 Definitions

Let k be a field of characteristic not equal to 2. Let a and b be elements of
k such that

ab(4a3 + 27b2) 6= 0 (4.1)

and define f(x) = x3 + ax+ b. Then the curve E over k given by y2 = f(x)
is an elliptic curve with j-invariant not equal to 0 or 1728.

Remark 4.3. The assumption (4.1) also implies:

f(−b/a) = (−b/a)3 + a(−b/a) + b = (−b/a)3 6= 0 (4.2)

and

f(3b/a) = (3b/a)3 + a(3b/a) + b = a−3b
(
27b2 + 4a3

)
6= 0; (4.3)
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in other words, −b/a and 3b/a are not the x-coordinate of any 2-torsion
point on E.

4.2.1 Mestre’s construction

We now come to the construction by Mestre [22], which is of fundamental
importance to the rest of this chapter. We shall denote

φ(u) = − b
a

u4 + u2 + 1

u4 + u2
. (4.4)

We will mostly interpret φ as a rational expression in whatever argument is
given to it, but we will sometimes regard it as a morphism P1

k → P1
k. Note

that
u2φ(u) = φ(u−1).

For each d ∈ k, we define the smooth projective curve Cd over k as

Cd : dv2 = f(φ(u)).

For each d ∈ k, we have a morphism πd1 : Cd → Ed sending (u, v) to (φ(u), v).
It is clear from (4.4) that φ satisfies

aφ(u)(u4 + u2) = −b(u4 + u2 + 1).

Multiplying both sides with (u2 − 1), we get

aφ(u)u2(u4 − 1) = b(1− u6).

Rearranging this, we obtain

au2φ(u) + b = u6(aφ(u) + b).

Finally, from this it follows that we have

f(φ(u−1)) = f(u2φ(u)) = u6φ(u)3 + au2φ(u) + b

= u6(φ(u)3 + aφ(u) + b) = u6f(φ(u)).

For each d ∈ k therefore, there exists the involution τ d of Cd defined by

τ d : Cd → Cd

(u, v) 7→ (u−1, u3v)
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We define a second morphism πd2 : Cd → Ed for each d ∈ k, by setting
πd2 = πd1 ◦ τ d. The morphism πd2 sends (u, v) to (u2φ(u), u3v).

Summarizing, we have two morphisms for each d ∈ k

π1 : Cd → Ed π2 : Cd → Ed

(u, v) 7→ (φ(u), v) (u, v) 7→ (u2φ(u), u3v)

as well as the following diagram

Cd τd //

π1 !!

Cd

π2}}

Ed

For brevity, we denote the curve C1 by C, the automorphism τ 1 by τ ,
and the morphisms π1

1 and π1
2 from C to E by π1 and π2. This concludes

the discussion of Mestre’s construction.

Remark 4.4. Unless stated otherwise, when write (u0, v0) for a point on
C, we will mean u0 to be its u-coordinate, and v0 to be its v-coordinate.

4.2.2 An affine model for C

We create an affine model for C that is smooth away from infinity. We
introduce the change of variables v′ = u3(u2 + 1)2v, resulting in a model for
C of the form

v′2 = g(u), (4.5)

with g(u) a polynomial of degree 14 equal to

g(u) = (u2 + 1)

( (
− b
a

)3

(u4 + u2 + 1)3 −

b(u4 + u2 + 1)(u4 + u2)2 + b(u4 + u2)3

)
. (4.6)

We will show that (4.5) defines a smooth affine curve in Proposition 4.8(ii).
We have g(0) = (−b/a)3 6= 0. Relative to the model v′2 = g(u), the curve C
has two points∞1 and∞2 at infinity. The maps π1 : C → E and π2 : C → E
are now given by

π1 : C → E π2 : C → E

(u, v′) 7→ (φ(u), u−3v′(u2 + 1)−2) (u, v′) 7→ (u2φ(u), v′(u2 + 1)−2)
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while the automorphism τ : C → C is given by

τ : C → C

(u, v′) 7→ (u−1, u−7v′).

4.3 Creating good twists

In this section, we take k = Q. The conditions on a and b, which are now
elements of Q, are as in the previous section, and the rest of the notation
introduced there remains valid. The lemmas 4.5 and 4.6 in this subsection
will explain the relevance of the curves Cd and the morphisms πdi . They
will be used to construct good twists of E.

Lemma 4.5. Take k = Q. Let α, β ∈ k with β 6= 0, and write c =
f(φ(α))/β2. The point

(α, β)

lies on the curve Cc, and the points

(φ(α), β) and (α2φ(α), α3β)

lie on the elliptic curve Ec.

Proof. It is obvious that (α, β) lies on Cc. The two points (φ(a), β) and
(α2φ(α), α3β) are its images on Ec under πc1 and πc2.

Lemma 4.6. Suppose that there exists P ∈ Cd(Qp) such that πd1(P ) and
πd2(P ) generate Ed(Qp) topologically. Then there exists a good twist of E
with respect to d and p.

Proof. By perturbing P if necessary, we may assume that u0 = u(P ) and
v0 = v(P ) are both finite, and that v0 is non-zero. Choose u′0 and v′0 ∈
Q with v′0 6= 0 such that u′0 is close to u0 and v′0 is close to v0. Define
c = f(φ(u′0))/v′20 ; by possibly taking u′0 and v′0 closer to u0 and v0, we may
assume that c/d ∈ Q∗2p . By Lemma 4.5, the curve Cc contains the rational
point (u′0, v

′
0), and Ec contains the rational points

Q′1 = (φ(u′0), v′0)) and Q′2 = (u′20 φ(u′0), u′30 v
′
0)).

Under the isomorphism defined over Qp

Ec → Ed

(x, y) 7→ (x, y
√
c/d)
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the points ±Q′1 and ±Q′2 map to points lying arbitrarily close to ±Q1 and
±Q2, where Q1 = πd1(P ) and Q2 = πd2(P ). Hence, possibly after taking u′0
and v′0 closer to u0 and v0, we get that Q′1 and Q′2 are topological generators
of Ec(Qp).

Lemma 4.6 provides the implication going from a purely p-adic statement
to a statement about rational points. Therefore, after establishing some
elementary properties of the curves Cd, we will restrict to k = Qp. Later
on, in section 4.6, we will go back to assuming k = Q, and we will use
Lemma 4.6 to draw conclusions about the existence of good twists. In fact,
the hypothesis of Lemma 4.6 is so important in this chapter, that we will
make it into a definition.

Definition 4.7. We will say that P ∈ Cd(Qp) is a Mestre point if the points
πd1(P ) and πd2(P ) generate Ed(Qp) topologically.

4.4 Properties of the curve C

In this section, the field k is an arbitrary field of characteristic not equal to
2. We will collect some information on C (defined in section 4.2.1) and its
maps to E. Let the assumptions and notation on the ground field k, the
curve E, the curve C, and the maps π1,π2 and τ be as in section 4.2.

Proposition 4.8. The following statements are true.

(i) The branch locus of π1 consists of the points on E with x equal to
−b/a or 3b/a. The ramification loci of π1 and π2 are disjoint.

(ii) The polynomial g is separable. The genus of C is equal to 6.

Proof. We let C ′ be the smooth projective curve defined by

C ′ : v2 = f

(
− b
a

w2 + w + 1

w2 + w

)
.

Putting v′′ = v(w2 + w)2, we obtain for C ′ an affine model of the form
v′′2 = h(w) with h(w) a polynomial of degree 8 with a simple zero at 0.
Note that, relative to this model, the curve C ′ has two points ∞′1,∞′2 at
infinity. In terms of the coordinates (u, v′) on C, and the coordinates (w, v′′)
on C ′, we define the maps

π′1 : C → C ′ π′′1 : C ′ → E

(u, v′) 7→ (u2, uv′) (w, v′′) 7→
(
− b
a

w2 + w + 1

w2 + w
, v′′(w2 + w)−2

)
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With these definitions, we have factored the map π1 as π′′1 ◦ π′1.
In view of (4.2) and (4.3), the points on E with x-coordinates −b/a or

3b/a do not belong to the 2-torsion on E, and hence there are two of both.

E

C ′

C

(−b/a, η)

∞′1

∞1

(−b/a,−η)

∞′2

∞2

(3b/a, η′)

(−1/2, η′)

(3b/a,−η′)

(−1/2,−η′)

0E

We analyze the ramification of the degree-two map π′′1 : C ′ → E. It is
unramified above the identity 0E of E, since the points with w = 0 or
w = −1 map to 0E. It is ramified at the two points (w, v) where w = ∞,
which map to the points with x = −b/a. If w is finite, not equal to 0 or
−1, and π′′1 is ramified at (w, v), then the equation

− b
a

T 2 + T + 1

T 2 + T
= − b

a

w2 + w + 1

w2 + w
=: x0

must have a unique solution T = w; equivalently, the polynomial

T 2 + T +
b

ax0 + b

has its unique zero at T = w. Hence we must have b/(ax0 + b) = 1/4. In
that case, we must therefore have x0 = 3b/a and w = −1/2. Summarizing,
we have found that π′′1 is ramified at the points (w, v) lying above the points
where x = −b/a, which have w = ∞, and at the points (w, v) lying above
the points where x = 3b/a, which have w = −1/2.

Next, we analyze the ramification of the degree-two map π′1 : C → C ′

that, in terms of the models constructed at the start of the proof, sends
(u, v′) to (u2, uv′). It is certainly unramified above points where w is not
0 or ∞. It is also unramified above points where w = 0; indeed, there is
a single point on C ′ where w = 0, which corresponds to the smooth point
(0, 0) on the model v′′2 = h(w) for C ′ obtained before, whereas on C there
are two points with u = 0. We claim further that π′1 is ramified above
the points at infinity ∞′1 and ∞′2. Indeed, it is clear that the preimage of
{∞′1,∞′2} under π′1 is {∞1,∞2}.
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Summarizing, we have shown, firstly, that π′′1 ramifies at ∞′1 and ∞′2,
which map to the two points where x = −b/a, and at the two points where
w equals −1/2, which map to the points where x = 3b/a; secondly, that π′1
ramifies at the two points ∞1 and ∞2, which map to ∞′1 and ∞′2. This
shows that π1 is ramified at ∞1 and ∞2, each with ramification index 4,
and at the four points where u2 = −1/2, each with ramification index
2. Applying the automorphism τ , we get that π2 is ramified at the two
points where u = 0 with ramification index 4, and at the four points where
u2 = −2, each with ramification index 2. This shows that the ramification
loci are disjoint.

Now we prove (ii). From (4.6), we see that the set of zeros of g is the
union of the set of zeros of u2 + 1, and the set of u with u4 + u2 6= 0 such
that

f(φ(u)) = f

(
− b
a

u4 + u2 + 1

u4 + u2

)
(4.7)

is zero. We see from (4.2) and (4.3) that f(φ(u)) = 0 implies φ(u) 6= −b/a
and φ(u) 6= 3b/a, hence π1 is unramified above E[2]. This shows that there
are exactly 12 values of u for which (4.7) vanishes. Hence g has 14 distinct
zeros, and therefore it can have no repeated roots. This shows that C has
genus 6, and ends the proof.

Remark 4.9. Part (ii) of Proposition 4.8 was mentioned by Mestre [22].

We define the map
i : C → E × E (4.8)

as the map given by (π1, π2). Also, we will use the letter Z to denote the
(reduced) closed subscheme of C consisting of the points (u, v) with

u4 + u2 + 1 = 0 or v = 0.

Using (4.5) and (4.6), we see that Z ×k k consists of the 8 points where
u4 + u2 + 1 = 0, and the 14 points where v = 0, hence 22 points in total.

Proposition 4.10. The restriction of i to C − Z is an embedding.

Proof. We resume the notation of the proof of Proposition 4.8. We first
claim that i|C−Z is injective, and that i(C −Z) and i(Z) are disjoint; from
this we will deduce that i|C−Z is a homeomorphism onto its image. Let P
be a point on C − Z and write (Q1, Q2) for the point on E ×E that is the
image of P under i. By definition of i, we have Q1 = π1(P ) and Q2 = π2(P ).
We distinguish three pairwise exclusive possibilities for (Q1, Q2).



4.4. Properties of the curve C 83

Case (a): we have Q1 = 0E or Q2 = 0E. First suppose P /∈ Z. If
Q1 = 0E, we have that u(P ) = 0 or u(P )2 + 1 = 0; since P /∈ Z, we must
have u(P ) = 0. We get that u(τ(P )) = u(P )−1 = ∞, hence τ(P ) = ∞1

or τ(P ) = ∞2, and we have Q2 = π1(τ(P )) = (−b/a,±η), where η2 =
f(−b/a). If Q2 = 0E, we can apply τ to the result of the previous calculation
to find that Q1 = (−b/a,±η). Hence, there are four possibilities for P : the
two points with u(P ) = 0 and the two points with u(P ) = ∞. The first
pair maps to the two points (0E, (−b/a,±η)), the second pair maps to the
two points ((−b/a,±η), 0E). Now suppose P ∈ Z. Reasoning as before, we
find that Q1 = 0E or Q2 = 0E implies u(P )2 + 1 = 0. One checks that i
sends the points satisfying u2 + 1 = 0 to (0E, 0E).

Case (b): we have x(Q1) = 0 or x(Q2) = 0. Then we have either
φ(u(P )) = 0 or u(P )2φ(u(P )) = 0. In either case we have u(P )4 + u(P )2 +
1 = 0. Hence P lies in Z. Conversely, if P is such that u(P )4+u(P )2+1 = 0,
then we have both x(Q1) = 0 and x(Q2) = 0.

Case (c): we have that x1 = x(Q1) and x2 = x(Q2) are both finite and
non-zero. By the discussion of the previous case, we have u(P )4+u(P )2+1 6=
0. Then since x1 = φ(u(P )) and x2 = u(P )2φ(u(P )), we have that u(P ) is
also finite and non-zero. If we further put y1 = y(Q1) and y2 = y(Q2), then
from y1 = v(P ) we get that y1 is also finite. First assume that y1 = v(P )
is zero. Then P ∈ Z. Assuming that y1 = v(P ) is non-zero, then since
we also had u(P )4 + u(P )2 + 1 6= 0, we must have P /∈ Z. Since we have
y2 = u(P )3v(P ) = u(P )3y1, we can find back u(P ) from x1, x2, y1, y2 as
u(P ) = x2y2/(x1y1), and we can find v(P ) back as v(P ) = y1. Hence P is
determined by Q1 and Q2 in case (c).

Clearly, cases (a) through (c) exhaust the possibilities for the pair
(Q1, Q2). The discussion of the three cases above then establishes the claim
that the restriction to C − Z of i is injective, and that i(C − Z) is disjoint
from i(Z). Since i is proper, it is closed and since i(C −Z) is disjoint from
i(Z), we must have that the map i|C−Z is closed onto its image. Since i|C−Z
is moreover injective and continuous, we get that it is a homeomorphism
onto its image.

To prove that i|C−Z is an embedding in the sense of algebraic geometry,
it is enough by the proof of [12, Lemma II.7.4] to show that it separates
tangent vectors, i.e., that, for each P ∈ C, the map

TPC → Ti(P )(E × E) = Tπ1(P )(E)× Tπ2(P )(E)

induced by i is an injection. By dualizing, this is equivalent to showing that
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the pull-back map

i∗P : T ∗π1(P )(E)× T ∗π2(P )(E)→ T ∗PC (4.9)

on cotangent spaces is surjective for all P ∈ C. Let ω be the invariant
differential

ω =
dx

y
∈ H0(E,Ω1

E)

on E. Since T ∗PC is a one-dimensional k-vector space, it suffices to check
that for each P ∈ C, at least one of the everywhere-regular differential forms
π∗1ω and π∗2ω on C is non-zero at P . One easily computes that

π∗1ω =
1

v
d

(
− b
a

u4 + u2 + 1

u4 + u2

)
=

2b

a

2u2 + 1

u3v(u2 + 1)2
du =

2b

a

2u2 + 1

v′
du

and

π∗2ω =
1

v
d

(
− b
a

u4 + u2 + 1

u2 + 1

)
= −2b

a

u2 + 2

(u2 + 1)2v
du = −2b

a

u3(u2 + 2)

v′
du.

One computes that the zero-locus of π∗1ω consists of {∞1,∞2} as well as the
points where u2 = −1/2, while the zero-locus of π∗2ω consists of the points
where u2 = 0 or u2 = −2. Hence (4.9) is surjective for all P ∈ C, and so
i : C → E × E separates tangent vectors. This concludes the proof of the
proposition.

The following lemma will be used in the proof of Proposition 4.12. We
keep the assumption that k is a field of characteristic not equal to 2.

Lemma 4.11. Let e1, e2, e3 be the roots of f = x3 + ax + b in k, and let
{λ, µ, ν} = {1, 2, 3}. Then the roots in k of the polynomial

T 2 + T +
b

aeλ + b
(4.10)

are eµ/eλ and eν/eλ. If furthermore k is a p-adic field with p 6= 2, and e1, e2

and e3 are of equal valuation in k, then one of the elements

e1

e2

,
e2

e3

, and
e3

e1

is a square in k(e1, e2, e3).
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Proof. Without loss of generality, we assume that we have λ = 1, µ = 2, ν =
3. Long division gives f = (x− e1)g with

g = (x2 + e1x+ a+ e2
1),

so that we have

(x−e2/e1)(x−e3/e1) = e−2
1 g(e1x) = x2+x+

a+ e2
1

e2
1

= x2+x+
−b/e1

(−ae1 − b)/e1

,

from which the first claim follows. The second one is clear.

Proposition 4.12. Let φ1 denote φ and let φ2 denote the function u 7→
u2φ(u). Let k be a finite extension of Qp for some prime number p with
p 6= 2, and assume that the zeros of f in k have the same valuation.

(i) Let i be either 1 or 2. If f has three roots in k, then at least two of
the roots of f are contained in φi(P1(k)).

(ii) Let e1, e2, e3 be the roots of f in k, and let {λ, µ, ν} = {1, 2, 3}. Then

φ2(φ−1
1 (eλ)) = {eµ, eν}.

Proof. We first prove assertion (i) for i = 1. For any e ∈ k, we have
e ∈ φ1(P1(k)) if and only if there exists u ∈ k such that

φ1(u) = − b
a

u4 + u2 + 1

u4 + u2
= e. (4.11)

Let e1, e2, e3 be the zeros of f . If for example e = e1, Lemma 4.11 shows
that the solutions to this equation are u = ±

√
e2/e1 and u = ±

√
e3/e1.

For the cases where e = e2 and e = e3, the solutions follow from this by
symmetry.

By the identity (e1/e2) · (e2/e3) · (e3/e1) = 1 and the fact that e1, e2, e3

have equal valuation in k, we can choose λ, µ and ν such that {λ, µ, ν} =
{1, 2, 3} in such a way that eλ/eµ is a square in k. Therefore equation (4.11)
has the solution uλ =

√
eµ/eλ in k if e = eλ, and the solution uµ = 1/uλ in

k if e = eµ. Hence we find that uλ is a preimage in k of eλ under φ1, and uµ
is a preimage in k of eµ under φ1. Hence assertion (i) is proven for i = 1.
For i = 2, we need only observe

φ2(uλ) = u2
λφ(uλ) = (eµ/eλ) · eλ = eµ (4.12)
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and
φ2(uµ) = u2

µφ(uµ) = (eλ/eµ) · eµ = eλ.

We now prove (ii). We define u′λ =
√
eν/eλ. The preimages of eλ under φ1

are ±uλ and ±u′λ. We get φ2(±uλ) = eµ by (4.12), as well as

φ2(±u′λ) = (eν/eλ) · φ(±u′λ) = (eν/eλ) · eλ = eν .

This concludes the proof of (ii).

4.5 Existence criteria for Mestre points

In this section we will establish various criteria for the existence of Mestre
points on C in the sense of Definition 4.7.

Definition 4.13. By a smooth curve (resp. surface) over Zp we shall mean
a scheme equipped with a smooth morphism to Zp whose fibres are of di-
mension one (resp. two).

4.5.1 Assumptions and definitions

For the rest of this section, we assume that p > 2 is a prime, that k = Qp

and that a and b are elements of Zp such that

ab(4a3 + 27b2) ∈ Z∗p. (4.13)

The elliptic curve E over Qp is defined as at the start of section 4.2, and
we let E be the Weierstrass model of E defined by y2 = x3 + ax + b. By
(4.13), we have that E is a smooth curve over Zp. In particular, the elliptic
curve E has good reduction, and E is a minimal Weierstrass model of it. By
C we denote the closure of i(C) in E × E , where i is as in (4.8), and by Z
we denote the closure of i(Z) in E × E , both considered with their reduced
subscheme structures. We further define C◦ = C − Z. We have that C is a
proper curve over Zp. Moreover, since C is the scheme-theoretic image of
the morphism C → E×E by [12, ex. II.3.11(d)], it is flat over Zp by [3, 1.1].
Since C◦ ⊂ C is an open subscheme of the proper flat scheme C over Zp, and
its fibres over Zp are smooth, it is itself smooth over Zp. The automorphism
of E × E that interchanges both factors will be denoted by τ . On i(C), the
map τ induces the same map as the automorphism τ of C. The maps π1

and π2 from C to E extend to morphisms C → E , which we will denote by
the same symbols.
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By Γn ⊂ E × E , we denote the graph of multiplication by n, in the
following sense

Γn = {(e, ne) : e ∈ E} .

We have that the curve Γn ⊂ E × E is smooth over Zp for all n. By the
valuative criterion of properness, we have

E(Qp) = E(Qp) = E(Zp), C(Qp) = C(Qp) = C(Zp)

and via these identifications the subgroups En(Qp) and En(Qp), as defined
in section 1.2, coincide for all integers n ≥ 0.

4.5.2 The case where p does not divide #E(Fp)
The following proposition shows that if #E(Fp) is coprime to p, we may
reduce the problem of finding a P as in Lemma 4.6 to a problem involving
only the reductions CFp and EFp .

Proposition 4.14. Assume that the order of E(Fp) is coprime to p. Let
P ∈ C(Fp). Then the following conditions are equivalent.

(i) The points π1(P ) and π2(P ) generate E(Fp).

(ii) There exists a Mestre point P ∈ C(Qp) with PFp = P .

Proof. The implication (ii)⇒ (i) is clear: if P ∈ C(Qp) is such that PFp = P ,

and π1(P ) and π2(P ) do not generate E(Fp), then certainly π1(P ) and π2(P )
do not generate E(Qp) topologically.

Since the ramification loci of the πi are disjoint by Proposition 4.8(i),
without loss of generality we may assume (π1)Fp to be unramified, and hence

étale, at P . Write Q = π1(P ).
Denote the set of points in C(Qp) that reduce to P with C(Qp)P . If

P ′ ∈ C(Qp)P , then by the assumption of the proposition, the points Q′1 =
π1(P ′) and Q′2 = π2(P ′) together with E1(Qp) generate E(Qp). Therefore
it suffices to show that we can choose P ′ in such a way that some Z-linear
combination of Q′1 and Q′2 lies in E1(Qp) − E2(Qp). By the fact that π1 is
étale at P and by Hensel’s lemma, the restriction of π1 to C(Qp)P surjects
to the set E(Qp)Q of points Q′ ∈ E(Qp) such that (Q′)Fp = Q. We have
E(Qp)Q = π1(P ′) + E1(Qp) for any P ′ ∈ C(Qp)P . Hence, for any P ′ ∈
C(Qp)P , there exists P ′′ ∈ C(Qp)P with π1(P ′)− π1(P ′′) /∈ E2(Qp).

Now we use the fact that the order of E(Fp) is coprime to p. We have
`π1(P ) = 0 for some integer ` coprime to p. Let P ′ ∈ C(Qp)P be arbitrary.
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The fact `π1(P ) = 0 implies that `π1(P ′) ∈ E1(Qp). If `π1(P ′) /∈ E2(Qp), we
are done. Otherwise, there exists P ′′ ∈ C(Qp)P such that π1(P ′)−π1(P ′′) /∈
E2(Qp). We have `π1(P ′)− `π1(P ′′) /∈ E2(Qp), since E2(Qp) has index p in
E1(Qp), and p - `, and therefore `π1(P ′′) /∈ E2(Qp). Hence in this case we
can take P ′′ instead of P ′, and we are again done.

4.5.3 The case of anomalous reduction

The most notable case to which Proposition 4.14 does not apply is the case
where E(Fp) has order p. Indeed, when we have p > 5 the Hasse–Weil bound
implies that if E(Fp) is divisible by p, then it must be equal to p.

Definition 4.15. We say that E has anomalous reduction if E(Fp) is cyclic
of order p.

In this section, we establish two criteria for the existence of Mestre points
on C in the anomalous reduction case.

Remark 4.16. Assume that E has anomalous reduction at p, and that
p > 7. We have the usual short exact sequence

0→ E1(Qp)→ E(Qp)→ E(Fp)→ 0

as well as the topological isomorphism E1(Qp) ∼= Zp [32, IV.6.4(b)]. Then
according to Proposition 1.14(iii), we have either E(Qp) ∼= Zp or E(Qp) ∼=
Zp×Z/pZ. In the first case, we have that E(Qp) is procyclic, and the results
of chapter 3 give that E has good twists. Therefore, the results from this
section are only needed in the second case.

Lemma 4.17. Assume that E has anomalous reduction. Let P1 and P2 be
elements of E(Qp). Consider the following three statements.

(i) The points P1 and P2 generate E(Qp) topologically.
(ii) The points P1 are P2 are not both contained in E1(Qp).

(iii) There exists n ∈ Z such that (P1, P2)Fp is contained in Γn(Fp), but
(P1, P2)Z/p2Z is not contained in Γn(Z/p2Z).

Then (ii)+(iii) implies (i).

Proof. Assume that assumption (ii) and (iii) hold. In view of (ii), we only
have to prove that 〈P1, P2〉 lies dense in E1(Qp). Since we had assumed
p > 2, we have E1(Qp) ∼= Zp; therefore it suffices to show that some integer
linear combination of P1 and P2 lies in E1(Qp)− E2(Qp). We let n be as in
(iii). Then we have P2 − nP1 ∈ E1(Qp)− E2(Qp).
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Anomalous reduction: a transversality criterion

To establish the first criterion for the existence of a Mestre point on C in
the case of anomalous reduction, we reinterpret condition (iii) of Lemma
4.17 as the statement that a certain intersection is transversal.

Proposition 4.18. Let S be a smooth surface over Zp, and let D1,D2 ⊂ S
be smooth curves over Zp. Let P ∈ S(Zp). The following conditions are
equivalent.

(i) We have the following equality between subsets of S(Z/p2Z):{
P ′ ∈ D1(Z/p2Z) : (P ′)Fp = PFp

}
=
{
P ′ ∈ D2(Z/p2Z) : (P ′)Fp = PFp

}
.

(ii) The curves (D1)Fp and (D2)Fp are tangent to each other in PFp.

Proof. The result can be seen as a variant of the multi-variable Hensel’s
lemma. A difference here is that we are only interested in lifting Fp-points
to Z/p2Z-points.

By the fact that S is locally of finite type, we have that S is of the
following form locally around PFp

SpecZp[x1, . . . , xn]/(f1, . . . , fr)

for f1, . . . , fr ∈ Zp[x1, . . . , xn], where we may identify P with the section
0 = (0, . . . , 0). Let i ∈ {1, 2}. Since Di is smooth along P of relative
dimension 1, there exist

g1,1, . . . , g1,n−1, g2,1, . . . , g2,n−1 ∈ Zp[x1, . . . , xn]

such that Di is given as the zero-set Vi of

gi,1, . . . , gi,n−1

locally around 0, where the gi,j are such that the matrix

Ti =


∂gi,1
∂x1

. . .
∂gi,1
∂xn

...
. . .

...
∂gi,n−1

∂x1
. . .

∂gi,n−1

∂xn


(0,...,0)

has an (n− 1)-by-(n− 1) minor whose determinant is contained in Z∗p. As
usual, the tangent space of (Di)Fp at 0Fp may be identified with the kernel
of the matrix

Ti,Fp
∣∣
(0,...,0)
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where Ti,Fp denotes the entry-wise reduction modulo p of the matrix Ti.
Since Z/p2Z is a local ring and Di and Vi agree on open subsets con-

taining P and 0 respectively, the Z/p2Z-points of Di reducing to PFp are
in bijection with the Z/p2Z-points of Vi reducing to 0Fp . It thus suffices to
show that equality

{P ′ ∈ V1(Z/p2Z) : P ′Fp = 0Fp} = {P ′ ∈ V2(Z/p2Z) : P ′Fp = 0Fp} (4.14)

is equivalent to
ker(T1,Fp) = ker(T2,Fp). (4.15)

Let Zi = {P ′ ∈ Vi(Z/p2Z) : P ′Fp = 0Fp}. We can describe Zi explicitly in
terms of Ti,Fp : any P ′ ∈ Zi must be of the form

(δ1p, . . . , δnp)

with δ1, . . . , δn ∈ Fp. Let P ′ = (δ1p, . . . , δnp). By expanding the equations

gi,1(δ1p, . . . , δnp) = . . . = gi,n−1(δ1p, . . . , δnp) = 0,

we find that for P ′ to be contained in Zi, it is necessary and sufficient that

Ti|(0,...,0) ·

 δ1p
...
δnp

 =

 0
...
0

 in (Z/p2Z)n−1.

This shows that (4.14) and (4.15) are indeed equivalent. This finishes the
proof.

In order to be able to keep track of tangent directions on (E × E)Fp , we
introduce the following definition.

Definition 4.19. Let κ be Qp or Fp, and denote by Eκ the base-change of
E to κ. Let ω = dx

y
be the standard invariant differential on Eκ. Let D be

a smooth curve on (E × E)κ. If P ∈ D(κ), then the tangent direction to D
at P is (

i∗2ω

i∗1ω

)
(P ) ∈ P1(κ), (4.16)

where
(i1, i2) : D → (E × E)κ, (4.17)

is the closed embedding of D into (E × E)κ, and where the left-hand side of

(4.16) denotes the value of the function
i∗2ω

i∗1ω
∈ κ(D) at P .
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The above definition can be given in a dual form that is a little more
involved, but shows more clearly the relationship between Definition 4.19
and tangent vectors.

Lemma 4.20. Let κ be Qp or Fp, and denote by Eκ the base-change of E
to κ. Let ω = dx

y
as in Definition 4.19. For every Q ∈ E(κ), there is a

unique tangent vector ω∗Q ∈ TQEκ such that ω(ω∗Q) = 1. Let D, i1 and i2 be
as in Definition 4.19, and let P ∈ D(κ) be a smooth point with i1(P ) = Q1

and i2(P ) = Q2. Choose a non-zero element η ∈ TPD. Then the tangent
direction to D at P is the image of η under the composite map

TPD
(i1,i2)∗−→ TQ1Eκ × TQ2Eκ 99K P1(κ),

where the last arrow is the partially-defined map that sends (t1ωQ1 , t2ωQ2)
to (t2 : t1) for all t1, t2 ∈ κ that are not both zero.

Proof. We have that ω is a basis for the cotangent space T ∗QEκ for every
Q ∈ Eκ, so for each Q ∈ E(κ) there exists a unique tangent vector ω∗Q ∈ TQEκ
such that ω(ω∗Q) = 1. Furthermore, ω∗Q is a basis of TQEκ for each Q, which
shows that the map TQ1Eκ×TQ2Eκ 99K P1(κ) is defined everywhere except at
0. Suppose that t1, t2 ∈ κ are such that (i1, i2)∗(η) = (t1ωQ1 , t2ωQ2). Then
we have i∗1(ω)(η) = ω(i1∗(η)) = ω(t1ωQ1) = t1, and likewise i∗2(ω)(η) = t2.
This shows that i∗2(ω)/i∗1(ω) evaluated at P gives t2/t1, which is what we
had to show.

The following lemma is due to J. F. Voloch, to whom I am very grateful
for mentioning it to me in a discussion about this chapter.

Lemma 4.21. Assume that E(Fp) is cyclic of order p. Write

f(x)(p−1)/2 = U(x) + Axp−1 + xpV (x)

for some U(x) of degree at most p− 2 and V (x) of degree (p− 3)/2. Then
the map

E(Fp)→ Fp
(x, y) 7→ yV (x)

is an isomorphism of groups.

Proof. Let φ : E ′Fp → EFp the isogeny dual to the Frobenius. Since E(Fp)[p] 6=
0, we have that φ is separable and its image equals pE(Fp) = 0. The result
now follows from Proposition 1.3 in [40].
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The proof of the following proposition makes essential use of the smooth-
ness of C◦.

Proposition 4.22. Suppose that E has anomalous reduction. Write

f(x)(p−1)/2 = U(x) + Axp−1 + xpV (x) (4.18)

for some U(x) of degree at most p− 2 and V (x) of degree (p− 3)/2. Write
ω = dx/y for the standard invariant differential on EFp. Assume that there
exists a point P ∈ C◦(Fp) such that(

π∗2ω

π∗1ω

)
(P ) 6=

(
π∗2yV (x)

π∗1yV (x)

)
(P ), (4.19)

where the value infinity is allowed for both sides. Then C has a Mestre
point.

Proof. Recall that we denote by τ the automorphism of E × E that inter-
changes both factors. Replacing P by τ(P ) amounts to replacing both sides
of (4.19) by their inverses. Possibly after replacing P by τ(P ), we may as-
sume that π1(P ) 6= 0, so there exists an integer n such that π2(P ) = nπ1(P ),
which is equivalent to P ∈ Γn(Fp).

The left-hand side of (4.19) is the tangent direction to C◦Fp ⊂ (E × E)Fp
at P . For the right-hand side, we have(

π∗2yV (x)

π∗1yV (x)

)
(P ) = n

by Proposition 4.21 and the definition of n. We claim that the tangent
direction to (Γn)Fp at P is n. The curve Γn arises as the image of the closed
immersion

(i1, i2) : E → E × E
defined on points by e 7→ (e, ne). Using Definition 4.19, we see that the
tangent direction to (Γn)Fp at any point P ′ is(

i∗2ω

i∗1ω

)
(P ′) = n.

(This uses the fact that [n]∗ω = nω, where [n] : EFp → EFp is multiplication
by n; see [32, III.5.3].) Hence the statement (4.19) is equivalent to the
tangent direction to C◦ at P not being equal to the tangent direction to
Γn at P . Then by Proposition 4.18, there exists a point P ′ ∈ C◦(Z/p2Z)
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with (P ′)Fp = P , but P ′ /∈ Γn(Z/p2Z). By Hensel’s lemma, there exists
P ′′ ∈ C◦(Zp) ⊂ C(Qp) so that P ′′ satisfies (P ′′)Z/p2Z = P ′. Let Q1 =
π1(P ′′) and Q2 = π2(P ′′). The condition (P ′′)Z/p2Z /∈ Γn(Z/p2Z) implies
that Q2 − nQ1 ∈ E1(Qp) − E2(Qp), and hence by Lemma 4.17 we have
that Q1 and Q2 are topological generators of E(Qp). This concludes the
proof.

Remark 4.23. By expanding, we can make the inequality (4.19) more
explicit. It says that, for a point P = (u0, v0) ∈ C(Fp), we have

−u
3
0(u2

0 + 2)

2u2
0 + 1

6= u3
0V (−b/a · (u4

0 + u2
0 + 1)/(u2

0 + 1))

V (−b/a · (u4
0 + u2

0 + 1)/(u4
0 + u2

0)))

with V defined as in (4.18). It seems difficult in general to prove that there
exists a point P = (u0, v0) ∈ C(Fp) for which this inequality is satisfied. For
instance, the degree of the rational function on the right-hand side grows
linearly with p, so that the naive estimate comparing the number of zeros of
a rational function on C with the number of points in C(Fp) will not work.

Anomalous reduction: an explicit criterion

Proposition 4.24. Suppose that E has anomalous reduction. Assume that
−ab ∈ Q∗2p . Then C has a Mestre point.

Proof. We assume −ab ∈ Q∗2p . We will prove the existence of P ∈ C(Qp)
such that Q1 = π1(P ) is contained in E1(Qp) − E2(Qp) and Q2 = π2(P )
is contained in E(Qp) − E1(Qp). Since E(Q) is isomorphic to either Zp or
Zp×Z/pZ, where in the latter case the subgroup Zp corresponds to E1(Qp),
the points Q1 and Q2 generate E(Qp) topologically.

Let Q1 = (x0, y0) ∈ E1(Qp)−E2(Qp) be arbitrary. Observe that we have
vp(x0) = −2. Also, since y2

0 = x3
0 + ax0 + b, we have x0 ∈ Q∗2p . Then, for

u0 ∈ Qp, the statement that P = (u0, y0) is contained in C(Qp) and is such
that π1(P ) = Q1 is equivalent to

x0 = φ(u0) = − b
a

w2
0 + w0 + 1

w2
0 + w0

, (4.20)

where we have put w0 = u2
0. Solving this equation for w0, we get

w+ = −1

2
+

1

2

√
1− 4b

ax0 + b
and w− = −1

2
− 1

2

√
1− 4b

ax0 + b
(4.21)
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Since vp(4b/(ax0 + b)) = 2, we have w+ ∈ Qp. Moreover, by p-adically
expanding the square roots in the expressions (4.21), we obtain

w+ = −1

2
+

1

2

(
1− 1

2

4b

ax0 + b
+O(p4)

)
= − b

ax0 + b
+O(p4) (4.22)

and

w− = −1

2
− 1

2

(
1− 1

2

4b

ax0 + b
+O(p4)

)
= −1 +

b

ax0 + b
+O(p4)

We have that x0 and −b/a are both contained in Q∗2p , so that w+ is a
p-adic square. Therefore, there exists u0 ∈ Qp that satisfies (4.20), and
equation (4.22) shows that vp(w+) = −vp(x0) = 2. We have that P =
(u0, y0) maps to Q1 ∈ E1(Qp). Moreover, Q2 = π2(u0, y0) is equal to Q2 =
(u2

0φ(u0), u3
0y0) = (u2

0x0, u
3
0y0), which is obviously contained in E(Qp) −

E1(Qp). This proves the proposition. (Note that we couldn’t have used
w− even if −1 ∈ Q∗2p , since in that case both π1(

√
w−, y0) and π2(

√
w−, y0)

would lie in E1(Qp).)

4.5.4 Good points over ramified twists

For d ∈ Q∗p, recall that a twist Ed of E is called ramified if the valuation
of d is odd. For such d, the existence of Mestre points on Cd is guaranteed
by Proposition 4.26 in the case where Ed has the full 2-torsion over Qp. (In
the other cases we will have that Ed(Qp) is procyclic, so we can apply the
results of the previous chapter.)

Lemma 4.25. Let d ∈ Q∗p be an element of valuation 1. Then the quadratic
twist Ed of E has Kodaira type I∗0, and Ed(Qp)[2] contains no non-zero
points of good reduction.

Proof. The 2-torsion of Ed is defined over any extension of Qp that contains
the roots of the polynomial

x3 + ad2x+ bd3 = d3f(x/d). (4.23)

As (4.23) shows, the same is true over any extension of Qp that contains
the roots of f . Since f (mod p) is separable over Fp, the roots of f are
contained in an unramified extension of Qp. The 2-torsion of Ed is therefore
defined over the maximal unramified extension Qun

p of Qp. Equation (4.23)
shows that for any x0 ∈ Qun

p , we have that x0 is a root of f if and only
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if (dx0, 0) is a point in Ed(Qun
p ). Since y2 = x3 + ad2x + bd3 defines a

minimal Weierstrass model of Ed, the non-trivial 2-torsion of Ed(Qun
p ) is of

bad reduction, which shows that Ed(Qun
p )/Ed

0(Qun
p ) contains the Klein four-

group. The only Kodaira type for which the component group contains the
Klein four-group is I∗0 (see [32, C.15]), so this must be the Kodaira type of
Ed.

Proposition 4.26. Let d ∈ Q∗p be an element of valuation 1. Assume
furthermore that either p > 7 or Ed

0(Qp) ∼= Zp, and assume furthermore
that #Ed(Qp)[2] = 4. Then there exists a Mestre point P ∈ Cd(Qp).

Proof. The assumption that either p > 7 or Ed
0(Qp) ∼= Zp is there to guaran-

tee Ed
0(Qp) ∼= Zp. (See Theorem 1.1; note that Ed has additive reduction.)

Putting Φ = Ed(Qp)/E
d
0(Qp), we have the usual short exact sequence

0→ Zp → Ed(Qp)→ Φ→ 0,

with Φ isomorphic to (Z/2Z)2 by Lemma 4.25. Proposition 1.14(iv) shows
that Ed(Qp) is topologically isomorphic to Zp × (Z/2Z)2.

When denoting points on Ed, we shall be using the equation dy2 = f(x)
for it. By performing Tate’s algorithm on a Weierstrass model for Ed, we
find that the three non-trivial cosets of Ed

0(Qp) in Ed(Qp) are of the following
form:

Se =
{

(x0, y0) ∈ Ed(Qp) : x0 ≡ e (mod p)
}
,

where e ∈ Z∗p is one of the three roots of f . We may apply Proposition 4.12

to f , using φ2(u) = φ1(u−1), to find that there exist two distinct roots e1

and e2 of f , such that if we put α1 = e1 and α2 = e2, there exist elements
β1 and β2 of Fp such that

φ(β1) = α1, φ(β2) = α2

and
φ(β−1

1 ) = α2, φ(β−1
2 ) = α1,

where we use · to denote reduction modulo p. These identities imply that
for any point P ′ = (u1, v1) in Cd(Qp) such that u1 = β1, if we write π1(P ′) =
(x1, y1) and π2(P ′) = (x2, y2), then we have x1 = α1 and x2 = α2 in Fp.

Let Q1 = (x1, y1) be an arbitrary point in Ed(Qp) − Ed
0(Qp) with x1 ≡

e1 (mod p). We will construct a point P = (u1, v1) in Cd(Qp) such that
π1(P ) = Q1. Such a P may be constructed from a solution u = u1 to the
equation

− b
a

u4 + u2 + 1

u4 + u2
= x1, (4.24)
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since for a solution u1 to (4.24), the morphism π1 maps P = (u1, y1) to Q1.
Over Fp, the reduction modulo p of (4.24) has 4 distinct solutions, since the
right-hand side reduces to α1, and we know from Proposition 4.8(i) that
π1 is unramified above the point (α1, 0) on the smooth curve EFp . We may
thus apply Hensel’s lemma to find a solution u1 such that u1 = β1. We
define P = (u1, y1). Then we have π1(P ) = Q1, as desired. Moreover, by
the previous paragraph, we also have π2(P ) = (x2, y2), with x2 an element
of Zp such that x2 = α2.

Now take Q1 = (x1, y1) to be a point in Ed(Qp) such that x1 ≡ e1

(mod p) and such that some multiple of Q1 lies in Ed
0(Qp) − Ed

1(Qp). (We
know that such a Q1 exists by the fact that the points (x1, y1) satisfying
x1 ≡ e1 (mod p) make up a coset of Ed

0(Qp) ∼= Zp in Ed(Qp) ∼= Zp ×
(Z/2Z)2.) Then by the previous paragraph, there exists P in Cd(Qp) such
that Q1 = π1(P ) and Q2 = π2(P ) lie in different non-trivial cosets of Ed

0(Qp)
in Ed(Qp). Since in addition some multiple of Q1 lies in Ed

0(Qp)− Ed
1(Qp),

it is clear that Q1 and Q2 generate Ed(Qp) topologically.

4.6 Existence criteria for good twists

We let p > 2 be a prime number and a and b rational numbers of non-
negative p-adic valuation such that

ab(4a3 + 27b2)

is a p-adic unit. We let E be the elliptic curve over Q given by y2 =
x3 + ax+ b. In this section, we will combine the results of section 4.5 with
Lemma 4.6 to give existence results on good twists, given d ∈ Q∗p, of E with
respect to d and p.

4.6.1 Unramified twists

The following definitions are made in order to apply the results of section
4.5 to (unramified) twists Ed of E, instead of just E itself. Instead of the
curves Ed, given by dy2 = x3 +ax+b, we consider the curves E ′d, which are
given by y2 = x3 + ad2x + bd3. The curves Ed and E ′d are isomorphic for
each d, but the E ′d have the advantage that they are given by Weierstrass
equations.

Definition 4.27. For d ∈ Z∗p, we let E ′d be the elliptic curve given by
y2 = x3 + ad2x + bd3 and E ′d the smooth Weierstrass curve over Zp given
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by the same equation. Note that E ′d is isomorphic to Ed and that E ′d is a
smooth Weierstrass model of E ′d. We let C ′d be the curve arising from the
construction in section 4.2.1 applied to the case where E is replaced by the
elliptic curve E ′d. Note that C ′d is isomorphic to Cd as defined in section
4.2.1. We define Z ′d ⊂ C ′d in the same way as we defined Z for C (see the
start of section 4.4). As in section 4.2.1, we have maps

π′d1 : C ′d → E ′d, π′d2 : C ′d → E ′d,

and we define the notion of a Mestre point on C ′d in the same way we did
for Cd. We denote by i′d : C ′d → E ′d × E ′d the map i′d = (π′d1 , π

′d
2 ). We let

C ′d ⊂ E ′d×E ′d be the closure of i′d(C ′d). The morphisms π′d1 and π′d2 extend
to morphisms π′d1 , π

′d
2 : C ′d → E ′d. We let Z ′d ⊂ E ′d × E ′d be the closure of

i′d(Z ′d). Finally, the smooth subscheme C ′d−Z ′d of E ′d×E ′d we will denote
by C ′dsmooth.

Remark 4.28. One checks that the isomorphisms between E ′d and Ed and
between Cd and C ′d can be chosen in such a way that, for d ∈ Z∗p and
i ∈ {1, 2}, the diagram

Cd ∼ //

πdi
��

C ′d

π′di
��

Ed ∼ // E ′d

commutes. Thus C ′d has a Mestre point if and only if Cd does.

Unramified twists: the non-anomalous reduction case

Let d ∈ Q∗p be an element with vp(d) = 0.

Proposition 4.29. Assume that the order of E ′d(Fp) is coprime to p. Let
P ∈ C ′d(Fp). If the points π′d1 (P ) and π′d2 (P ) generate E ′d(Fp), then there
exists a good twist of E with respect to d and p.

Proof. Proposition 4.14, with E replaced by E ′d, implies that C ′d has a
Mestre point. By Remark 4.28, so does Cd. The result now follows from
Lemma 4.6.

The following proposition deals with the special case of cyclic non-
anomalous reduction. It is partly a corollary of the results from the previous
chapter.
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Proposition 4.30. Assume that E ′d(Fp) is cyclic of order coprime to p.
Then there exists a good twist of E with respect to d and p.

Proof. We have that E ′d(Qp) sits inside a short exact sequence with contin-
uous maps, and with the second map an embedding

0→ E ′d1 (Qp)→ E ′d(Qp)→ E ′d(Fp)→ 0,

where E ′d1 (Qp) is procyclic and E ′d(Fp) is cyclic of order coprime to p. By
Proposition 1.14(ii), we have that E ′d(Qp) is procyclic, and therefore so is
Ed(Qp). By Proposition 3.27 we find that E has a good twist with respect
to d and p.

Unramified twists: the anomalous reduction case

Again, we let d ∈ Q∗p be an element with vp(d) = 0.

Proposition 4.31. Assume that the order of E ′d(Fp) is equal to p. Write(
x3 + ad2x+ bd3

)(p−1)/2
= U(x) + Axp−1 + xpV (x) (4.25)

for some U(x) of degree at most p− 2 and V (x) of degree (p− 3)/2. Write

ω =
dx

y
(4.26)

for the standard invariant differential on (E ′d)Fp. Assume that there exists
a point P ∈ C ′dsmooth(Fp) such that(

π∗2ω

π∗1ω

)
(P ) 6=

(
π∗2yV (x)

π∗1yV (x)

)
(P ), (4.27)

where the value infinity is allowed for both sides. Then E has a good twist
with respect to d and p.

Proof. From Proposition 4.22, with E replaced by E ′d, it follows that C ′d

has a Mestre point. By Remark 4.28, so does Cd. The result follows from
Lemma 4.6.

Proposition 4.32. Suppose that Ed has anomalous reduction at p. Assume
that −abd ∈ Q∗2p . Then E has a good twist with respect to d and p.

Proof. From Proposition 4.24, with E replaced by E ′d, it follows that C ′d

has a Mestre point. By Remark 4.28, so does Cd. The result follows from
Lemma 4.6.
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4.6.2 Ramified twists

If d ∈ Q∗p is such that vp(d) = 1, and p is greater than 7, it is very easy to
prove that E has good twists with respect to d and p.

Proposition 4.33. Let d ∈ Q∗p be an element of valuation one. Assume
also that either p > 7 or Ed

0(Qp) is topologically isomorphic to Zp. Then E
has a good twist with respect to d and p.

Proof. We know from Lemma 4.25 that Ed has Kodaira type I∗0, so that
Ed(Qp) fits inside an exact sequence

0→ Ed
0(Qp)→ Ed(Qp)→ Φ→ 0,

with Ed
0(Qp) topologically isomorphic to Zp, and Φ isomorphic to a subgroup

of (Z/2Z)2. Proposition 1.14(iv) shows that we have

Ed(Qp) ∼= Zp × Φ (4.28)

as topological groups. By (4.28) and since Φ is isomorphic to a subgroup of
(Z/2Z)2, we have that Φ is isomorphic to the torsion subgroup of Ed(Qp)[2].
If Φ is not isomorphic to the full (Z/2Z)2, then Ed(Qp) is a product of
two procyclic groups of coprime order, hence procyclic, and we may apply
Proposition 3.27 to find that E has good twists with respect to d and p. If
Φ ∼= (Z/2Z)2, we may apply Proposition 4.26 to find that Cd has a Mestre
point, and the result follows from Lemma 4.6 again.

4.7 A computer experiment

Propositions 4.29–4.33 provide five criteria implying the existence of good
twists of E, and hence the p-adic density of rational points on Km(E ×E)
by Theorem 3.20. These criteria are all formulated in terms of elliptic curves
over finite fields, and hence are well-suited to do a computer search. In this
section, we list the results of a computer search we have performed using
the open-source Computer Algebra System sage [35].

For the purpose of this section only, we will introduce the notion of a
lucky prime for E. Very loosely speaking, a prime p will be called lucky
for E if we can deduce from Propositions 4.29–4.33 and Theorem 3.20 that
E has good twists with respect to p. We keep the notation introduced in
Definition 4.27.
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Definition 4.34. We will call a prime p lucky (for E) if p is greater than 7,
the elliptic curve E can be given by a short Weierstrass equation

y2 = x3 + ax+ b (4.29)

with a and b in Q∗ such that vp(a) = vp(b) = vp(ab(4a
3 + 27b2)) = 0, and

for all d ∈ Q∗p with vp(d) ∈ {0, 1} at least one of the following criteria is
satisfied:

(C1) we have vp(d) = 0, the order of E ′d(Fp) is coprime to p, and there
exists P ∈ C ′d(Fp) such that π′d1 (P ) and π′d2 (P ) generate E ′d(Fp);

(C2) we have vp(d) = 0, and E ′d(Fp) is cyclic of order coprime to p;
(C3) we have vp(d) = 0, the order of E ′d(Fp) is equal to p, and for some

P ∈ C ′dsmooth(Fp) we have(
π∗2ω

π∗1ω

)
(P ) 6=

(
π∗2yV (x)

π∗1yV (x)

)
(P ), (4.30)

where ω is as in (4.26) and V is as in (4.25);
(C4) we have vp(d) = 0, the order of E ′d(Fp) equals p, and −abd ∈ Q∗2p ;
(C5) we have vp(d) = 1.

If p is not lucky for E, then we will call it unlucky (for E). Note that the
set of primes that are unlucky for E include the primes p for which E has
bad reduction.

The ultimate use of the above definition is recorded in the following
proposition.

Proposition 4.35. Let p be a lucky prime for E. If X = Km(E×E), then
X(Q) is dense in X(Qp).

Proof. By Theorem 3.20, it suffices to show that if d ∈ Q∗p, then E has
a good twist with respect to d and p. Obviously, we may assume that
vp(d) = 0 or vp(d) = 1. Choose an arbitrary d with vp(d) = 0 or vp(d) = 1.
One proceeds in a manner depending on d: if (C1) is satisfied, apply Propo-
sition 4.29; if (C2) is satisfied, apply Proposition 4.30; if (C3) is satisfied,
apply Proposition 4.31; if (C4) is satisfied, apply Proposition 4.32; if (C5)
is satisfied, apply Proposition 4.33.

Remark 4.36. In fact, to verify whether p is a lucky prime for E, we
only need to check the conditions (C1)–(C5) for d running through a set of
coset representatives of Q∗2p in Q∗p, which has only four elements. In fact,
since (C5) automatically holds for the two coset representatives for which
vp(d) = 1, it suffices to check the conditions (C1)–(C4) for a single d such
that d ∈ Z∗2p , and a single d for which d ∈ Z∗p − Z∗2p .
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4.7.1 Results of the experiment

In our search, we consider the set S5,5 of all elliptic curves Ea,b over Q given
by a short Weierstrass equation

Ea,b : y2 = x3 + ax+ b

with −5 ≤ a ≤ 5, where a 6= 0, and 0 < b ≤ 5, as well as the 299 prime
numbers p such that 7 < p < 2000. For each of the curves Ea,b and each
prime p in the sets just described, we have let the computer decide the
question whether p is lucky for Ea,b.

From the results of our experiments, it seems that the criteria developed
in this thesis always seem to yield the existence of good twists with respect
to p, roughly speaking, once p is large enough. The following table shows
this more precisely. For each of the 49 elliptic curves E in our search space,
we list the set of unlucky primes p with 7 < p < 2000, along with its
cardinality Na,b. The asterisks denote primes of bad reduction.

(a, b) Set of unlucky primes for Ea,b Na,b

(−5, 1) {11∗, 43∗, 73} 3
(−5, 2) {17, 23, 47} 3
(−5, 3) {257∗} 1
(−5, 4) {13, 17∗, 19, 43, 53, 67} 6
(−5, 5) {53} 1
(−4, 1) {37, 229∗} 2
(−4, 2) {37∗} 1
(−4, 3) {13∗, 17, 23, 29, 43} 5
(−4, 4) {11∗, 47} 2
(−4, 5) {43, 419∗} 2
(−3, 1) {17, 19, 37} 3
(−3, 3) ∅ 0
(−3, 4) {13, 53, 67} 3
(−3, 5) {23, 29} 2
(−2, 1) {11, 19, 29, 41} 4
(−2, 2) {19∗, 23} 2
(−2, 3) {11, 53, 109, 211∗} 4
(−2, 4) {13, 17, 29, 37} 4
(−2, 5) {643∗} 1
(−1, 1) {23∗} 1
(−1, 2) {13∗} 1
(−1, 3) {239∗} 1
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(a, b) set of unlucky primes for Ea,b Na,b

(−1, 4) {13, 29, 107∗} 3
(−1, 5) {11∗, 17, 43, 61∗} 4
(1, 1) {31∗} 1
(1, 2) {11, 23, 37, 43} 4
(1, 3) {13∗, 17, 19∗} 3
(1, 4) {109∗} 1
(1, 5) {11, 97∗} 2
(2, 1) {17, 59∗} 2
(2, 2) {17} 1
(2, 3) {11∗, 23, 31, 37, 47, 53, 67, 71} 8
(2, 4) {19, 29∗} 2
(2, 5) {101∗} 1
(3, 1) {47, 73} 2
(3, 2) {11, 29, 79} 3
(3, 3) {11, 13∗, 41} 3
(3, 4) {17, 19, 23, 53} 4
(3, 5) {29∗} 1
(4, 1) {71, 283∗} 1
(4, 2) {13∗} 1
(4, 3) {499∗} 1
(4, 4) {11, 13, 43∗, 47} 4
(4, 5) {11, 17, 19∗, 23, 43, 47, 61} 7
(5, 1) {11, 17∗, 19, 29, 31∗} 5
(5, 2) {19∗, 37, 47} 3
(5, 3) {37, 743∗} 2
(5, 4) {11, 233∗} 2
(5, 5) {37, 47∗, 53, 61} 4

Proof of Theorem 4.2. This follows from the table above. �

4.8 sage code

This section lists the sage source code that was used to perform the com-
putations described in section 4.7.
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4.8.1 Looking for two-element sets of generators

This procedure takes as input two elements of an abelian group isomorphic
to Z/mZ ⊕ Z/nZ with m | n, and decides whether or not they generate it.

# Given a list of two elements P, Q of an abelian group A

# isom. to Z/m + Z/n, with m | n, check whether <P,Q> = A.

def isSetOfGenerators(A,elements):

P = elements[0]; Q = elements[1]

m = A.invariants()[0]; n = A.invariants()[1]

# we take n to be at least m

if m > n:

r = m

m = n

n = r

# if ord(P) < ord(Q), switch P and Q.

if P.order() != n:

R = P

P = Q

Q = R

# if ord(P) < n still holds, then <P,Q> != A.

if P.order() != n:

return false

# order of Q has to be multiple of m.

Q_order = Q.order()

if Q_order % m != 0:

return false

P_multiples = set([i*P for i in range(n)])

Q_multiples = set([j*Q for j in range(1,m)])

# check if {i*P} and {j*Q : 0<j<m} have empty int’n

return (P_multiples.intersection(Q_multiples) == set([]))
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4.8.2 Finding pairs in the image of C(Fp)
The following procedure takes an elliptic curve over Fp as input, and finds
the pairs (Q1, Q2) ∈ E(Fp) × E(Fp) such that Q1 = π1(P ) and Q2 = π2(P )
for some P ∈ C(Fp).

# given an elliptic curve E over F_p as input

# find the elements in the image of C(F_p) -> E(F_p) x E(F_p).

def findPairs(E):

a = E.a4(); b = E.a6()

K = a.base_ring()

R.<u> = PolynomialRing(K)

S.<x> = PolynomialRing(K)

p = K.characteristic()

alpha = K.multiplicative_generator()

gamma = -b/a

phi = gamma*(u^4+u^2+1)/(u^4+u^2)

f = x^3+a*x+b

# don’t need to consider u with u^4 + u^2 = 0

# (maps to infinity)

# also use the fact that u, u^-1, -u, -u^-1 all

# give the same pair of points on E: therefore

# u only needs to range up to (p-1)/4.

alpha_range = range(1,(p-1)/4)

u_list = [alpha^i for i in alpha_range]

pairsList = []

for u_0 in u_list:

x_0 = phi(u_0)

# is x_0 the x-coordinate of a point in E(F_p)?

f_0 = f(x_0)

if f_0.is_square() == false:

continue
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y_0 = f_0.sqrt()

# append the pair of points that was found

pairsList.append([[E.point([x_0,y_0]),E.point(

[u_0^2*x_0,u_0^3*y_0])],u_0])

return pairsList

4.8.3 The criteria involving anomalous reduction

The procedure checkAnomalousCurve takes an elliptic curve over Fp as
input, and determines whether either of Propositions 4.31–4.32 applies to
it. It returns 2 if this is the case, and 3 otherwise. The procedure computeV

computes the polynomial V from Lemma 4.21.

# given f in F_p[x], compute V

# such that x^p*V + A*x^(p-1) + U(x) = f(x)^((p-1)/2)

# with deg(U) < p-1

def computeV(f):

K = f.base_ring()

R.<x> = PolynomialRing(K)

p = K.characteristic()

g = f^((p-1)/2)

coeff_list = g.coeffs()

V = 0

for i in range(p,len(coeff_list)):

V += coeff_list[i]*x^(i-p)

return V

# input: elliptic curve E over GF(p) with j != 0 or 1728 and

# E.order() == p

# output: 2 if a good twist was found, 3 otherwise

def checkAnomalousCurve(E):
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a = E.a4(); b = E.a6()

K = a.base_ring()

p = K.characteristic()

if E.order() != p:

print("Number of points is wrong:",E.order())

return False

if a*b == 0:

return False

gamma = -b/a

# explicit criterion

if (gamma).is_square():

return 2

# Voloch’s criterion: need to enumerate points on C

R.<x> = PolynomialRing(K)

f = x^3 + a*x + b

phi = gamma*(x^4+x^2+1)/(x^4+x^2)

V = computeV(f)

alpha = K.multiplicative_generator()

alpha_range = range(1,(p-1)/4)

if (p-1) % 6 == 0 and p > 7:

alpha_range.remove((p-1)/6)

u_list = [alpha^i for i in alpha_range]

for u_0 in u_list:

x_0 = phi(u_0)

# is x_0 the x-coordinate of a point in E(F_p)?

# if yes, see if Voloch’s criterion holds there.
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if f(x_0).is_square():

# we have found a point, namely (u_0,v_0):

v_0 = f(x_0).sqrt()

# now check to see if (5.27) holds:

num_1 = u_0^3*(u_0^6 - 3*u_0^2 + 2)

denom_1 = -2*u_0^6 + 3*u_0^4 - 1

num_2 = u_0^3*v_0*V(u_0^2*phi(u_0))

denom_2 = v_0*V(phi(u_0))

if num_1*denom_2 != num_2*denom_1:

if not(num_1 == 0 and denom_1 == 0) and not(

num_2 == 0 and denom_2 == 0):

return 2

return 3

4.8.4 Wrapper code

The rest of the procedures are mainly non-mathematical in nature. The
procedure checkManyPrimes takes as input an elliptic curve E over Q and
upper and lower prime bounds max p and min p, and outputs a table listing,
among others, the primes of anomalous reduction that are lucky for E, the
primes of anomalous reduction that are lucky for the twist of E, the set of
primes that are unlucky for E, and the set of primes that are unlucky for
its twist.

# return e with

# e = 0 if E has bad reduction;

# e = 1 if E(F_p) has order 1;

# e = 2 if E is anomalous and satisfies C3 or C4;

# e = 3 if E is anomalous and can’t be dealt

# with by one of these criteria;

# e = 5 if E is non-anomalous and satisfies C1

# e = 6 if E is non-anomalous and can’t be dealt

# with by that criterion;
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# e = 7 if E(F_p) is cyclic non-anomalous (C2).

def checkSingleCurve(Ep,p):

A = Ep.abelian_group()

gen_orders = A.generator_orders()

if len(gen_orders) == 0:

return 1

n = gen_orders[0]

if len(gen_orders)==1:

if n == p:

return checkAnomalousCurve(Ep)

if (n % p) == 0 and n != p:

return 4

if (n % p) != 0:

return 7

pairsList = findPairs(Ep)

# check whether some pair is a set of generators;

# keep track of how many pairs

if pairsList == false:

return 8

else:

for pair in pairsList:

if isSetOfGenerators(A,pair[0]):

return 5

return 6

def checkManyPrimes(E,min_p,max_p):

counter = [0,0,0,0,0,0,0,0,0]

counter_t = [0,0,0,0,0,0,0,0,0]
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results = [range(1,500) for i in range(0,9)]

results_t = [range(1,500) for i in range(0,9)]

# p <= 7 is not allowed

min_p = max(11,min_p)

Delta = E.discriminant()*E.a4()*E.a6()

for p in prime_range(min_p,max_p):

F = GF(p)

alpha = F.multiplicative_generator()

if (Delta % p) == 0:

results[0][counter[0]] = p

counter[0] += 1

continue

Ep = E.change_ring(GF(p))

e = checkSingleCurve(Ep,p)

results[e][counter[e]] = p

counter[e] += 1

Ept = Ep.quadratic_twist(alpha)

e_t = checkSingleCurve(Ept,p)

results_t[e_t][counter_t[e_t]] = p

counter_t[e_t] += 1

badList = results[0][0:counter[0]]

oneList = results[1][0:counter[1]]

pGoodList = results[2][0:counter[2]]

pBadList = results[3][0:counter[3]]

two_pList = results[4][0:counter[4]]

lGoodList = results[5][0:counter[5]]

lBadList = results[6][0:counter[6]]

cyclicList = results[7][0:counter[7]]

oneList_t = results_t[1][0:counter_t[1]]

pGoodList_t = results_t[2][0:counter_t[2]]
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pBadList_t = results_t[3][0:counter_t[3]]

two_pList_t = results_t[4][0:counter_t[4]]

lGoodList_t = results_t[5][0:counter_t[5]]

lBadList_t = results_t[6][0:counter_t[6]]

cyclicList_t = results_t[7][0:counter_t[7]]

print(str([E.a4(),E.a6()])+":")

print("Primes of ’bad reduction’: "+str(badList))

print("Good anomalous primes: "+str(pGoodList))

print("Good anom. primes (twist): "+str(pGoodList_t))

print("Bad anomalous primes: "+str(pBadList))

print("Bad non-anomalous primes: "+str(lBadList))

print("Bad anom. primes (twist): "+str(pBadList_t))

print("Bad non-anom. primes (twist): "+str(lBadList_t))

badSet = list(set(badList).union(set(pBadList))

.union(set(lBadList)).union(set(pBadList_t))

.union(set(lBadList_t)))

badSet.sort()

howManyBad = len(badSet)

print("Set of bad primes / total number of primes: ")

print("("+E.a4().str()+","+E.a6().str()+") &"),

if howManyBad > 0:

print("\\{"),

for i in range(0,howManyBad-1):

print(str(badSet[i])+","),

print(badSet[howManyBad-1]),

print("\\}"),

else:

print("\\emptyset"),

print("& "+str(howManyBad)+" \\\\")

print(RR(100*(1-howManyBad/164)))


