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Chapter 2

Density results for diagonal
quartic surfaces

For c ∈ Q∗, let Vc be the smooth quartic surface in P3
Q given by

x4
0 + cx4

1 = x4
2 + cx4

3. (2.1)

Let Q2 denote the field of 2-adic numbers, let Z2 ⊂ Q2 denote the ring of
2-adic integers, and let v : Q2 → Z∪{∞} denote the 2-adic valuation, using
the convention v(0) = ∞. We will call a 2-adic integer a odd if v(a) = 0;
otherwise we will call it even.

The main result discussed in this chapter is the following theorem, due
to Sir Peter Swinnerton-Dyer.

Theorem 2.1 (Swinnerton-Dyer, 2010). Let c be 2 or 4. The set Vc(Q) lies
dense in Vc(Q2), when this set is equipped with the 2-adic topology.

The reasons for including a discussion of Swinnerton-Dyer’s theorem in
this thesis are twofold. Since this thesis is concerned with results concerning
p-adic density of rational points on K3 surfaces, and since Swinnerton-Dyer’s
result was the first such result to appear for any K3 surface and for any p, it
provides an important example of how such a result is arrived at. Secondly,
we have striven to provide more details in our proof, and incorporate some
minor improvements over the proof of Swinnerton-Dyer. For example, most
of our results are stated for arbitrary values of c, whereas Swinnerton-Dyer
restricts to c ∈ {2, 4, 8} (although his methods clearly would have allowed
him to go beyond this). Using this, we prove Theorem 2.1 for more values
of c than Swinnerton-Dyer.

In our proof of Theorem 2.1, we will follow the arguments of Swinnerton-
Dyer [38] in the main. The proof will be given in section 2.8.
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2.1 Some open subsets of Vc(Q2)

We start by defining some open sets of Vc(Q2). We use them to reduce the
proof of density of Vc(Q) in Vc(Q2) to the proof of density of Vc(Q) in many
smaller open subsets.

Definition 2.2. For any c ∈ Q∗, let Uc ⊂ Vc(Q2) be the open subset of
2-adic points that have representatives (a0 : a1 : a2 : a3) where the ai are
2-adic integers such that a0 and a2 are both odd.

Proposition 2.3. Let c ∈ Q be such that 1 ≤ v(c) ≤ 3. If the rational
points on Vc lie dense in Uc and the rational points on V16/c lie dense in
U16/c, then Vc(Q) lies dense in Vc(Q2) and V16/c(Q) lies dense in V16/c(Q2).

Proof. Suppose that (a0 : a1 : a2 : a3) defines a point in Vc(Q2), where the
ai are 2-adic integers that do not all have positive valuation. Then it follows
from (2.1) and the assumption on c that either a0, a2 are both odd, or a0, a2

are both even and a1, a3 are both odd. Moreover, there is an isomorphism
between Vc and V16/c defined as follows

ψc : Vc → V16/c

(x0 : x1 : x2 : x3) 7→ (x1 :
x0

2
: x3 :

x2

2
)

We see from this that either a0 and a2 are both odd, or we have that
ψc(a0 : a1 : a2 : a3) ∈ V16/c(Q2) has a representative (a′0 : a′1 : a′2 : a′3)
where the a′i are 2-adic integers such that a′0 and a′2 are both odd. So for
P ∈ Vc(Q2) we have either P ∈ Uc or ψc(P ) ∈ U16/c. This establishes the
proposition.

We partition the sets Uc into open subsets

U ′c ∪
∞⋃
n=1

U ′′c,n ∪
∞⋃
n=1

U ′′′c,n,

with the definition of these subsets included in the following definition.

Definition 2.4. We define various open subsets of Uc.

– Let U ′c ⊂ Uc be the open subset of 2-adic points that have representa-
tives (a0 : a1 : a2 : a3) such that the ai are all odd 2-adic integers.
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– Let Ac ⊂ U ′c be the open subset of points (a0 : a1 : a2 : a3) where the
ai additionally satisfy v(a0 +a2) = v(a1−a3) = 1. Let A′c ⊂ U ′c be the
open subset where instead the ai satisfy v(a0 − a2) = v(a1 + a3) = 1.

– For n ∈ Z≥1, let U ′′c,n ⊂ Uc be the set of 2-adic points that have
representatives (a0 : a1 : a2 : a3) where the ai are 2-adic integers such
that a0 and a2 are both odd and v(a1) = v(a3) = n.

– For n ∈ Z≥1, let Bc,n ⊂ U ′′c,n be the open subset of points (a0 : a1 : a2 :
a3) where the ai additionally satisfy v(a0 − a2) = 1 and v(a1 − a3) =
n+ 1.

– For n ∈ Z≥1, let U ′′′c,n ⊂ Uc be the open subset of 2-adic points that
have representatives (a0 : a1 : a2 : a3) where the ai are 2-adic integers
such that a0 and a2 are both odd, and either v(a1) > v(a3) = n or
v(a3) > v(a1) = n.

– For n ∈ Z≥1, let Cc,n ⊂ U ′′′c,n be the open subset of points (a0 : a1 : a2 :
a3) where the ai additionally satisfy v(a0 +a2) = 1, and let C ′c,n ⊂ U ′′′c,n
be the open subset of points (a0 : a1 : a2 : a3) where the ai additionally
satisfy v(a0 − a2) = 1.

Clearly, to prove density of a certain subset of Uc it suffices to prove its
density in each of the sets U ′c, U ′′c,n and U ′′′c,n. However, if we use some of
the automorphisms of Vc, it suffices to restrict our attention to smaller open
subsets Ac, A′c, Bc,n, Cc,n and C ′c,n.

Throughout the chapter, we make frequent use of the following auto-
morphisms of Vc.

Definition 2.5. For 0 ≤ i ≤ 3, let φi denote the automorphism of Vc that
acts on (x0 : x1 : x2 : x3) by multiplying the xi-coordinate by −1.

We observe that U ′c is the union of the images of Ac under the subgroup
of Aut(Vc) generated by the φi. Note also that we have A′c = φ2(φ3(Ac))
and C ′c,n = φ2(Cc,n) for each n. Also, each U ′′c,n is the union of the images
of Bc,n under the said subgroup of Aut(Vc) and each U ′′′c,n is the union of
the images of Cc,n. Therefore, to prove density of the set of Vc(Q) in Uc, it
suffices to prove its density in the sets Ac, Bc,n for all integers n ≥ 1 and in
either Cc,n or C ′c,n for all integers n ≥ 1.

2.1.1 Outline of the rest of the chapter

In sections 2.2 and 2.3, we introduce elliptic fibrations on Vc, and we investi-
gate the fibres of these fibrations. In section 2.4, we explain the strategy of
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proving density of rational points using elliptic fibrations. Sections 2.5–2.7
form the core of the proof. We will prove in section 2.5 that the existence of
any rational point on Vc that is in Cc,1 implies the density of Vc(Q) in Cc,1;
that the same fact implies the density of Vc(Q) inAc will be proven in section
2.6. In section 2.7, we will show that density of Vc(Q) in A′c = φ2(φ3(Ac))
implies the density of Vc(Q) in Bc,n for all integers n ≥ 1 and in C ′c,n for all
integers n ≥ 2. Therefore, in view of the arguments of the previous para-
graph, sections 2.5–2.7 show that the existence of a rational point of Vc that
is in Cc,1 implies the density of Vc(Q) in the set Uc defined at the start of
this section. Furthermore, if we combine this with Proposition 2.3, we find
that the existence of both a rational point of Vc that is in Cc,1 and a rational
point of V16/c that is in C16/c,1 implies the density of Vc(Q) in Vc(Q2).

2.2 Elliptic fibrations on Vc

We define rational maps f, g : Vc 99K P1 as follows:

f(x0 : x1 : x2 : x3) =
x0 − x2

x1 − x3

, g(x0 : x1 : x2 : x3) =
x0 + x2

x1 − x3

.

We observe that g = f ◦ φ2. By considering the identities

−x0 ± x2

x1 − x3

= c
(x1 + x3)(x2

1 + x2
3)

(x0 ∓ x2)(x2
0 + x2

2)

in the function field of Vc, we see that f and g are actually morphisms from
Vc to P1. For λ ∈ P1, the preimage f−1(λ) is the intersection of the cubic
surface

(x0 + x2)(x2
0 + x2

2) = − c
λ

(x1 + x3)(x2
1 + x2

3) (2.2)

with the plane x0 − x2 = λ(x1 − x3), with the understanding that the left-
hand side is equated to zero if λ = 0, and the right-hand side is equated to
zero if λ =∞, with λ replaced by any finite value. For µ ∈ P1, the preimage
g−1(µ) is the intersection of the cubic surface

(x0 − x2)(x2
0 + x2

2) = − c
µ

(x1 + x3)(x2
1 + x2

3),

with the plane x0 + x2 = µ(x1 − x3), with the understanding that the left-
hand side is equated to zero if µ = 0, and the right-hand side is equated to
zero if µ =∞, with µ replaced by any finite value.
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The morphisms f, g : Vc → P1 endow the surface Vc with a fibration in
curves of genus one (which is often abusively called an elliptic fibration).
Note that f has the section λ 7→ Pλ, where Pλ = (λ : 1 : −λ : −1). The
point Pλ is the intersection of f−1(λ) with the line x0 + x2 = x1 + x3 = 0.
Applying φ2, we see that g likewise has a section given by µ 7→ P ′µ, where
P ′µ = (µ : 1 : µ : −1). By taking Pλ to be the identity for the group law on
f−1(λ), and P ′µ for the one on g−1(µ), we may (and will) regard f and g as
elliptic fibrations, i.e. fibrations whose generic fibres are elliptic curves.

2.2.1 The level of a point on a Weierstrass curve

Let P ∈ Vc(Q2) and let E = e−1(e(P )) be a fibre of an elliptic fibration
e : Vc → P1 passing through P . Then E is an elliptic curve over Q2. Suppose
we are given a nice Weierstrass curve E over Z2 together with a morphism
i : E → E that is an isomorphism on generic fibres. On E(Q2), we have a
filtration (see section 1.2)

E(Q2) ⊃ E0(Q2) ⊃ E1(Q2) ⊃ E2(Q2) ⊃ . . . ,

inducing an exhaustive filtration {En(Q2)}∞n=0 on the subgroup of E(Q2)
that maps isomorphically to E0(Q2). If P is not the identity of E(Q2),
and P lies in E0(Q2), then there exists a largest integer n ≥ 0 such that
P ∈ En(Q2); we will call n the level of P on E . If the image of P does not lie
in E0(Q2), we will say that the level of P is−1: this is the same as saying that
the image of P has singular reduction. The choice of i is suppressed from
the terminology; it is always clear from the context. Usually the choices of
both i and E are clear: we will then speak of the level of P on E or along e,
or write levelE(P ).

2.3 Weierstrass models for the fibres of f

This section consists mainly of calculations, of which the aim is to find
Weierstrass models for the fibres of f . We do this in order to be able to
apply the results of chapter 1, which deal with Weierstrass curves. Moreover,
with a Weierstrass equation at hand it is easier to compute j-invariants
and division polynomials, as is done in the proof of Proposition 2.10. The
Weierstrass models and the changes of variables from which they result are
summarized in Propositions 2.6–2.8.

Throughout section 2.3, we assume 1 ≤ v(c) ≤ 3. By Z2 we denote the
integral closure of Z2 in Q2.
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Proposition 2.6. Let λ ∈ P1(Q2) − {0,∞} be such that λ8 6= c2 and
v(λ) ≥ 0. Then there exists an isomorphism from f−1(λ) to the generic
fibre of the Weierstrass curve in P2

Z2
with homogeneous coordinates x, y, z

given by

Eλ : y2z = x3 − 3λ6x2z − 3λ4(c2 − λ8)xz2 − λ2(c2 − λ8)2z3, (2.3)

where this isomorphism is given by

x = −x0 + x2

2c
, y =

x1 − x3

2
, z =

x1 + x3 + λ3

c
(x0 + x2)

2λ(c2 − λ8)
. (2.4)

Proof. Let λ be as in the proposition. The preimage f−1(λ) of λ under the
morphism f : Vc → P1 is the cubic curve over Q2

(x0 + x2)(x2
0 + x2

2) = − c
λ

(x1 + x3)(x2
1 + x2

3), x0 − x2 = λ(x1 − x3).

Note that it has the point Pλ defined in the previous section, which we take
to be the identity for the group law, endowing f−1(λ) with the structure
of an elliptic curve. We map f−1(λ) isomorphically to the cubic curve in
P3
Q2

(s0, s1, v0, v1) given by

s0(s2
0 + v2

0) = − c
λ
s1(s2

1 + v2
1), v0 = λv1 (2.5)

with the maps given by

s0 = x0 + x2, v0 = x0 − x2, s1 = x1 + x3, v1 = x1 − x3. (2.6)

If we project the image of f−1(λ) to P2
Q2

(s0, s1, v1), by eliminating v0 in
(2.5), its isomorphic copy in P2

Q2
(s0, s1, v1) is given by

s0(s2
0 + λ2v2

1) = − c
λ
s1(s2

1 + v2
1). (2.7)

The point Pλ maps to the flex point (s0 : v1 : s1) = (0 : 1 : 0), whose
tangent is given by λ3s0 = −cs1. We introduce the variable

s2 = s1 +
λ3

c
s0.

With this substitution we arrive at the curve in P2
Q2

(s0, v1, s2)

s3
0 =

c

λ

(
λ9

c3
s3

0 − 3
λ6

c2
s2

0s2 + 3
λ3

c
s0s

2
2 − s3

2 − v2
1s2

)
,
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isomorphic to the one given by (2.7). The effect of this last step is that the
image of the point Pλ is (s0 : v1 : s2) = (0 : 1 : 0), with the tangent now
given by s2 = 0. Rearranging, we get

− c
λ
v2

1s2 =

(
1− λ8

c2

)
s3

0 + 3
λ5

c
s2

0s2 − 3λ2s0s
2
2 +

c

λ
s3

2.

Finally, since λ8 6= c2, we may define an isomorphism from the curve defined
by the equation above to the Weierstrass curve given by

y2z = x3 − 3λ6x2z − 3λ4(c2 − λ8)xz2 − λ2(c2 − λ8)2z3,

by setting

x = −s0

2c
= −x0 + x2

2c
, y =

v1

2
=
x1 − x3

2
,

z =
s2

2λ(c2 − λ8)
=
x1 + x3 + λ3

c
(x0 + x2)

2λ(c2 − λ8)
.

Here, the factors 2 in the denominators are introduced for our convenience
at a later stage in this chapter. This ends the proof.

Proposition 2.7. Let λ ∈ P1(Q2) − {0,∞} be such that λ8 6= c2 and
v(λ) ≥ v(c). There exists an isomorphism from f−1(λ) to the generic fibre
of the Weierstrass curve in P2

Z2
with homogeneous coordinates x̃, ỹ, z̃ given

by

Ẽλ : ỹ2z̃ = x̃3 − 3λ6

c2
x̃2z̃ − 3λ4(c2 − λ8)

c4
x̃z̃2 − λ2(c2 − λ8)2

c6
z̃3. (2.8)

where this isomorphism is given by

x̃ = −x0 + x2

2c3
, ỹ =

x1 − x3

2c3
, z̃ =

x1 + x3 + λ3

c
(x0 + x2)

2λ(c2 − λ8)
. (2.9)

Proof. The new variables x̃, ỹ, z̃ are related to the x, y, z from Proposition
2.6 by x̃ = x/c2, ỹ = y/c2, z̃ = z.

Proposition 2.8. Let λ ∈ P1(Q2) − {0,∞} be such that λ8 6= c2 and
v(λ) < 0. There exists an isomorphism from f−1(λ) to the generic fibre of
the Weierstrass curve in P2

Z2
with homogeneous coordinates x̂, ŷ, ẑ given by

Êλ : ŷ2ẑ = x̂3 − 3λ−4c2x̂ẑ2 − λ−2c2(c2λ−8 + 1)ẑ3. (2.10)



30 Chapter 2. Density results for quartic surfaces

where this isomorphism is given by

x̂ = −x0 + x2

2λ4c
−
λ(x1 + x3) + λ4

c
(x0 + x2)

2(c2 − λ8)
, ŷ =

x1 − x3

2λ6
,

ẑ =
x1 + x3 + λ3

c
(x0 + x2)

2λ(c2 − λ8)
. (2.11)

Proof. Resuming the notation of Proposition 2.6, we set

u = x− λ6z = −x0 + x2

2c
−
λ5(x1 + x3) + λ8

c
(x0 + x2)

2(c2 − λ8)
,

we get a morphism from f−1(λ) to the curve given by the short Weierstrass
equation

y2z = u3 − 3λ4c2uz2 − λ2c2(c2 + λ8)z3. (2.12)

If we put ẑ = z, and define scalings of u and y as follows

x̂ = u/λ4, ŷ = y/λ6,

this defines an isomorphism from f−1(λ) to the curve (2.10).

Remark 2.9. The above propositions can of course be used to give Weier-
strass models for fibres of other elliptic fibrations on Vc. Let φ be any
automorphism of Vc. Then e = f ◦ φ is an elliptic fibration of Vc. For
λ ∈ P1(Q2) − {0,∞} such that v(λ) ≥ 0, Proposition 2.6 can be used to
give an embedding of e−1(λ) into the Weierstrass curve Eλ ⊂ P2

Z2
as defined

by (2.3). This embedding is obtained by precomposing the morphism (2.4)
with φ. Similarly, Propositions 2.7 and 2.8 can be used to obtain embed-
dings of e−1(λ) into the Weierstrass curves Ẽλ and Êλ given by (2.8) and
(2.10) for the appropriate values of λ ∈ P1(Q2)− {0,∞}.

2.3.1 The group structure on the fibres

It will be important for us in what follows to know the structure of the
topological groups Eλ(Q2), Ẽλ(Q2), and Êλ(Q2), where the notation is as in
Propositions 2.6–2.8, or at least the parts consisting of the points of good
reduction.

Proposition 2.10. Assume that 1 ≤ v(c) ≤ 3. We have the following
isomorphisms of topological groups.
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(i) For all λ ∈ P1(Q2)− {0,∞} with v(λ) = 0, we have

(Eλ)0(Q2) ∼= Z2,

and the isomorphism can be chosen in such a way that (Eλ)n(Q2) is
identified with 2nZ2 for all n ∈ Z≥0.

(ii) For all λ ∈ P1(Q2)− {0,∞} with v(λ) ≥ v(c), we have

(Ẽλ)0(Q2) ∼= Z2,

and the isomorphism can be chosen in such a way that (Ẽλ)n(Q2) is
identified with 2nZ2 for all n ∈ Z≥0.

(iii) For all λ ∈ P1(Q2)− {0,∞} with v(λ) < 0, we have

(Êλ)0(Q2) ∼= Z2,

and the isomorphism can be chosen in such a way that (Êλ)n(Q2) is
identified with 2nZ2 for all n ∈ Z≥0.

(iv) For all λ ∈ P1(Q2)− {0,∞} with v(λ) = v(c) + 1, we have

Ẽλ(Q2) ∼= 2−1Z2,

where 2−1Z2 is seen as an open subset of Q2, and the isomorphism
can be chosen in such a way that (Ẽλ)n(Q2) is identified with 2nZ2 for
all n ∈ Z≥0.

Proof. For (i)–(iii), it suffices to apply Theorem 1.28 of Chapter 1. Now
part (iv). In view of (ii) and Corollary 1.17, it is enough to show that

Ẽλ(Q2) ∼= 2−1Z2. Let λ ∈ P1 − {∞} be such that v(λ) = v(c) + 1. The

j-invariant of the generic fibre of Ẽλ equals

123 · 4λ8c2

4λ8c2 − λ8 − c2
,

which has positive 2-adic valuation. Therefore Ẽλ has either good or additive
reduction. However, the reduction must in fact be additive: the discriminant
of Ẽλ is equal to

16 · 27 · λ4c−8(4λ8c2 − (c2 + λ8)2),

and so has valuation 8, hence Ẽλ is minimal. We thus have a short exact
sequence

0→ (Ẽλ)0(Q2)→ Ẽλ(Q2)→ G→ 0
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where G is a group of order at most 4 [32, C.15]. It follows from Proposition

1.14(ii) that Ẽλ(Q2) is isomorphic to Z2 if and only if it has no elements of

order 2 or 3. We may prove that the 2- and 3-torsion of Ẽλ(Q2) is trivial

using the 2- and 3-division polynomials of (Ẽλ)Q2 . However, we may equally
well work with the 2- and 3-division polynomials Φ2,Φ3 ∈ Q2[u] of the

generic fibre of the Weierstrass curve (2.12), which is isomorphic to (Ẽλ)Q2 ;
we will do this since this makes the computation easier. The polynomial Φ2

is just the right-hand side of (2.12):

Φ2 = u3 − 3λ4c2u− λ2c2(c2 + λ8).

For Φ3 we have [32, III, Exercise 3.7]:

Φ3 = 3u4 − 18λ4c2u2 − 12λ2c2(c2 + λ8)u− 9λ8c4.

We find the valuation of the three zeros of Φ2 by inspecting its Newton
polygon. The coefficient of u0 has valuation 6v(c) + 2, that of u1 has val-
uation 6v(c) + 4, and that of u3 has valuation 0: each zero of Φ2 therefore
has valuation 2v(c) + 2

3
, and therefore does not lie in Q2. We consider the

Newton polygon of Φ3: the coefficient of u0 has valuation 12v(c) + 8, that
of u1 has valuation 6v(c) + 4, that of u2 has valuation 6v(c) + 5, and that of
u4 has valuation 0. From this, we see that Φ3 has a unique root in Q2, and
this root has valuation 6v(c) + 4. However, there is no 2-adic point (u0, y0)
on the curve (2.12) such that v(u0) = 6v(c) + 4, since then it would follow
from (2.12) and from the valuations of the coefficients of Φ2 we have just
computed that we would have

y2
0 ≡ −λ2c2(c2 + λ8) (mod 212v(c)+8).

However, the right-hand side cannot be a square in Q2, since λ2c2(c2 +λ8) =

λ2c4(1 + λ8/c2) is a square in Q2. Therefore Ẽλ(Q2) has no 2- or 3-torsion.
This concludes the proof.

Section 2.3.2 will illustrate how Proposition 2.10 can be used to prove
that, locally in Vc(Q2), one has 2-adic density of rational points.

2.3.2 The bad fibres

We will describe the bad (non-smooth) fibres of f .
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Lemma 2.11. The geometric fibre of f : Vc → P1 above λ = 0 is the union
of the line

x0 − x2 = x1 + x3 = 0

and two lines whose field of definition contains a square root of −1. The
geometric fibre of f above λ =∞ is the union of the line

x0 + x2 = x1 − x3 = 0

and two lines whose field of definition contains a square root of −1. The
fibres of f above λ = 0 and λ = ∞ both consist of three lines meeting in
one point.

Proof. If λ = 0, then from (2.2) we get that the fibre f−1(λ) is given by

(x1 + x3)(x2
1 + x2

3) = 0, x0 − x2 = 0.

If λ =∞, then the fibre f−1(λ) is given by

(x0 + x2)(x2
0 + x2

2) = 0, x1 − x3 = 0.

The last assertion is clear from these equations.

Lemma 2.12. Let λ ∈ Q be such that λ8 = c2. The geometric fibres of
f : Vc → P1 above λ are unions of a line and a smooth conic.

Proof. Let λ be as in the statement of the lemma. From (2.2) we get that
the fibre f−1(λ) is given by

(x0 + x2)(x2
0 + x2

2) = ±λ3(x1 + x3)(x2
1 + x2

3), x0 − x2 = λ(x1 − x3),

for some change of sign. Changing variables to

s0 = x0 + x2, v0 = x0 − x2, s1 = λ(x1 + x3), v1 = λ(x1 − x3),

we find that f−1(λ) is isomorphic to the curve given by

s0(s2
0 + v2

0) = ±s1(s2
1 + v2

1), v0 = v1.

By projecting onto the coordinates (s0, s1, v1), and slightly rearranging the
resulting equation, we get that f−1(λ) is isomorphic to the curve given by

(s0 ∓ s1)(s2
0 + s2

1 ± s0s1 + v2
1) = 0.

This clearly consists of a line and a non-singular conic.
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We will show that there are no other bad fibres than the ones described
in Lemmas 2.11–2.12.

Proposition 2.13. The non-smooth fibres of f : Vc → P1 are exactly the
fibres above λ = 0, λ =∞ and the λ with λ8 = c2.

Proof. Let λ ∈ P1(Q2) − {0,∞} be such that λ8 6= c2. We will see that
f−1(λ) is an elliptic curve. It follows from the proof of Proposition 2.8 that
(2.11) defines an isomorphism from f−1(λ) to the curve Eλ over Q2 defined
by

ŷ2ẑ = x̂3 − 3λ−4c2x̂ẑ2 − λ−2c2(c2λ−8 + 1)ẑ3.

(The restriction v(λ) < 0 in Proposition 2.8 is there just to ensure that
(2.10) defines a Weierstrass curve over Z2.) We claim that the Weierstrass
curve Eλ is non-singular. In order to see this, it suffices to check that its
discriminant, which is

16 · 27 · λ20c−8(4c2λ−8 − (c2λ−8 + 1)2) = −16 · 27 · λ20c−8(c2λ−8 − 1)2,

is non-zero, which is clearly the case. The proposition now follows from
Lemmas 2.11–2.12.

Corollary 2.14. Let P ∈ Vc(Q2) be a point lying on a bad fibre of f .

(i) We have f(P ) = 0 or f(P ) = ∞, and P lies on the line x0 − x2 =
x1 + x3 = 0 if f(P ) = 0, and on the line x0 + x2 = x1 − x3 = 0 if
f(P ) =∞.

(ii) Assume that P ∈ Uc. If f(P ) = 0, then P ∈ Ac or P ∈ φ3(Bc,n) for
some n ≥ 1. If f(P ) = ∞, then P ∈ A′c or P ∈ φ2(Bc,n) for some
n ≥ 1.

Proof. Let P be as in the statement, and let λ = f(P ) ∈ P1(Q2). The point
P is defined over Q2, so we cannot have λ8 = c2, since the valuation of c is
not a multiple of four. Hence λ is either 0 or ∞ by Proposition 2.13.

Assuming that f(P ) = 0, then by Lemma 2.11, the point P lies on the
line x0 − x2 = x1 + x3 = 0. Assume moreover P ∈ Uc. Then if P is given
by (a0 : a1 : a2 : a3) with the ai in Z2 and v(a0) = v(a2) = 0, we have
v(a0 − a2) = ∞ and v(a0 + a2) = v(2a0) = 1, and v(a1 + a3) = ∞ and
v(a1 − a3) = v(2a1). Hence, if v(a1) = 0, then P lies in Ac, if v(a1) > 0,
then P lies in φ2(Bc,n) with n = v(a1).

Assuming that f(P ) = ∞, then by Lemma 2.11, the point P lies on
the line x0 + x2 = x1 − x3 = 0. Assume moreover P ∈ Uc. Then if P is
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given by (a0 : a1 : a2 : a3) with the ai in Z2 and v(a0) = v(a2) = 0, we
have v(a0 + a2) =∞ and v(a0 − a2) = v(2a0) = 1, and v(a1 − a3) =∞ and
v(a1 + a3) = v(2a1). Hence, if v(a1) = 0, then P lies in A′c; if v(a1) > 0,
then P lies in φ3(Bc,n) with n = v(a1).

2.4 Using elliptic fibrations to prove density

We will show how the elliptic fibrations on Vc can be exploited to show
that, locally around a certain point in Vc(Q2), the rational points lie dense.
The main result of this section, Lemma 2.16, is almost trivial, but it neatly
captures the basic ideas of this chapter.

2.4.1 One elliptic fibration

Assume that e : Vc → P1 is an elliptic fibration. Let P and P ′ be elements of
Vc(Q2) lying on the same smooth fibre of e, and let E = e−1(e(P )). Assume
that we have a Weierstrass curve E over Z2, and an isomorphism i : E → EQ2

of elliptic curves over Q2. Suppose furthermore that we have an isomorphism
φ : En(Q2)

∼→ 2nZ2 for some n ≥ −1, where we write E−1(Q2) = E(Q2), and
that φ identifies Ek(Q2) with 2kZ2 for all k ≥ n. (Note that Proposition
2.10 asserts that there (many) triples (e, P, P ′) for which these conditions
are all satisfied.) In this setup, we have the following lemma.

Lemma 2.15. Suppose that we have

levelE(P ′) ≥ levelE(P ) ≥ n.

Then the multiples of P on E lie dense around P ′. Moreover, if there exists
a sequence {Qi}∞i=0 of rational points converging to P , then there exists a
sequence {Q′i}∞i=0 of rational points converging to P ′.

Proof. Let k = levelE(P ) and k′ = levelE(P ′). Then φ(i(P )) ∈ 2nZ2 has
valuation k and φ(i(P ′)) ∈ 2nZ2 has valuation k′ ≥ k. Hence the multiples
of φ(i(P )) are dense around φ(i(P ′)). Since φ ◦ i is a homeomorphism from
En(Q2) to 2nZ2, the multiples of P are dense around P ′. For any integer m,
we have the rational map [m] : Vc 99K Vc that is multiplication by m along
fibres of e; it is a morphism when restricted to the smooth locus of e. Let
{Qi}∞i=0 be as in the statement of the lemma. If {mi}∞i=0 is a sequence of
integers such that [mi]P converges to P ′, then {[mi]Qi}∞i=0 converges to P ′,
by continuity of [mi] near smooth fibres. We may thus take Q′i = [mi]Qi for
all i.
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2.4.2 Two elliptic fibrations

We continue with the assumptions of section 2.4.1. If we employ not just
one elliptic fibration e, but also a second one e′, we obtain a method for
proving density in an open subset of Vc(Q2). Let e′ : Vc → P1 be an elliptic
fibration, and suppose that P ′′ is an element of Vc(Q2) such that P ′ and P ′′

lie on the same smooth fibre of e′. Let us denote E ′ = (e′)−1(e′(P ′)).
Assume, analogously to what we assumed for E, that we have a Weier-

strass curve E ′ over Z2, and an isomorphism i′ : E ′ → E ′Q2
of elliptic curves

over Q2. Suppose furthermore that we have an isomorphism φ′ : E ′m(Q2)
∼→

2mZ2 for some m ≥ −1, where we again write E ′−1(Q2) = E ′(Q2), and that
φ′ identifies E ′k(Q2) with 2kZ2 for all k ≥ m.

Lemma 2.16. Suppose that we have both

levelE(P ′) ≥ levelE(P ) ≥ n

and
levelE′(P

′′) ≥ levelE′(P
′) ≥ m.

Then if there exists a sequence {Qi}∞i=0 of rational points converging to P ,
then there exists a sequence {Q′′i }∞i=0 of rational points converging to P ′′. In
particular, the rational points are dense around P ′′.

Proof. For any integer m, we have the rational maps [m]e : Vc 99K Vc and
[m]e′ : Vc 99K Vc that are multiplication by m along fibres of e and e′; the
rational maps [m]e and [m]e′ give morphisms when restricted to the smooth
loci of e and e′. Lemma 2.15 applied to P and P ′ yields the existence of
a sequence {mi}∞i=0 of integers such that ([mi]eP )i converges to P ′. By
restricting to a subsequence if necessary, we can assume that all [mi]eP lie
on smooth fibres of e′. Applying Lemma 2.15 to P ′ and P ′′, we get the
existence of a sequence {m′i}∞i=0 of integers such that ([m′i]e′P

′)i converges
to P ′′. If we put

Q′′i = [m′i]e′ [mi]eQi,

then {Q′′i }∞i=0 is a sequence of rational points converging to P ′′.

Lemma 2.16 shows the strategy that we will follow to prove density of
Vc(Q) in Vc(Q2). Continuing with the assumptions on e and e′ and the
notation established earlier in this section, one starts from a point P ∈
Vc(Q2) and a sequence {Qi}∞i=0 of rational points converging to P (this is
especially easy if P is itself rational), then one looks for an open subset U of
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Vc(Q2) such that, for all P ′′ ∈ U , there exists an auxiliary point P ′ ∈ Vc(Q2)
with e(P ′) = e(P ) and e′(P ′) = e′(P ′′) such that both

levelE(P ′) ≥ levelE(P ) ≥ n

and
levelE′(P

′′) ≥ levelE′(P
′) ≥ m.

It follows from Lemma 2.16 that the rational points are then dense in U .
This is the strategy that will be followed in sections 2.5 and 2.6, where

density in Cc,1 and Ac is established. The roles of e and e′ will be taken by
the elliptic fibrations f , g and f ◦ φ3. The arguments in section 2.7, which
covers density in Bc,n for n ≥ 1 and Cc,n for n ≥ 2, are similar, but apply
Lemma 2.15 instead of Lemma 2.16.

2.5 Density in Cc,1
From this point in the chapter on, we will assume that c ∈ Q∗ is such that
1 ≤ v(c) ≤ 3.

We will show that the rational points on Vc are dense in Cc,1. In this
section and the next, we will frequently use the fact that the equation (2.1)
defining Vc can be rewritten as

(x0 − x2)(x0 + x2)(x2
0 + x2

2) = −c(x1 − x3)(x1 + x3)(x2
1 + x2

3). (2.13)

Lemma 2.17. Let P = (a0 : a1 : a2 : a3) be a point in Cc,1, where the ai
are 2-adic integers at least one of which is a unit. Write λ = f(P ) and
π = (f ◦ φ3)(P ). Then the following statements are true.

(i) We have

v(a0 + a2) = 1, v(a0 − a2) = v(c) + 2, v(a2
0 + a2

2) = 1

as well as

v(a1 + a3) = 1, v(a1 − a3) = 1, v(a2
1 + a2

3) = 2.

(ii) We have v(λ) = v(π) = v(c) + 1.

Proof. The first equality is by definition of Cc,1. The third equality follows
from the fact that the square of an element a ∈ Z∗2 is 1 (mod 8). The second
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row of equalities all follow from the definition of Cc,1. Now from (2.13), we
get

v(a0 − a2) = v(c) + v(a1 − a3) + v(a1 + a3) + v(a2
1 + a2

3) (2.14)

− v(a0 + a2)− v(a2
0 + a2

2) = v(c) + 2,

which concludes the proof of (i). Part (ii) is a direct consequence of part
(i).

We have the following converse of Lemma 2.17(ii).

Lemma 2.18. Let λ0, π0 ∈ Q2 satisfy v(λ0) = v(π0) = v(c) + 1. Then there
exists a unique point P ∈ Cc,1 such that f(P ) = λ0 and (f ◦ φ3)(P ) = π0.
Moreover, the dependence of P on λ0 and π0 is continuous.

Proof. We rewrite (2.13) in terms of the homogeneous coordinates s0 =
x0 + x2, v0 = x0 − x2, s1 = x1 + x3, v1 = x1 − x3:

s0v0(s2
0 + v2

0) = −cs1v1(s2
1 + v2

1). (2.15)

The hypotheses imply that in (2.15) we have v0 = λ0v1 and v0 = π0s1. If
we set w = s0/v0, we obtain the following equation for w:

w3 + w + b0 = 0,

where

b0 = c
λ2

0 + π2
0

λ3
0π

3
0

.

The conditions on the valuations of λ0 and π0 give v(b0) = −3v(c) − 3.
(Here, we use that if κ ∈ Z2, then κ2 ≡ 22v(κ) (mod 22v(κ)+3).) Setting
w = w′/2c, we find that w′ satisfies

w′3 + 4c2w′ + 8b0c
3 = 0. (2.16)

By Hensel’s lemma, this has a solution w′0 ∈ Q2 with v(w′0) = 0. Moreover,
the three roots w′0, w

′
1, w

′
2 of (2.16) in Q2 reduce to the three zeros of X3 +1

in F2, only one of which lies in F2; therefore, w′0 is the unique solution to
(2.16) in Q2. It gives rise to the point

P0 = P (λ0, π0) = (w′0 + 2c : 2c/λ0 + 2c/π0 : w′0 − 2c : −2c/λ0 + 2c/π0),

of which one checks that it indeed lies in Cc,1. For the P whose existence
was asserted in the lemma we may thus take P = P0.
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Finally, we check that P (λ0, π0) depends on λ0 and π0 in a continuous
way. This comes down to the claim that if ((λi, πi))

∞
i=1 ⊂ Q2

2 is a sequence
of pairs converging to (λ0, µ0), then if w′i is a solution to

w′3 + 4c2w′ + 8bic
3 = 0 (2.17)

where

bi = c
λ2
i + π2

i

λ3
iπ

3
i

.

then the sequence (w′i)i tends to w′0. We now prove this claim. From (2.17)
we deduce

8(bi − bi−1)c3 = (w′3i−1 + 4c2w′i−1)− (w′3i + 4c2w′i)

= −(w′i − w′i−1)(w′2i + w′iw
′
i−1 + w′2i−1 + 4c2).

As i tends to infinity, we have that bi−bi−1 tends to 0, while v(w′2i +w′iw
′
i−1+

w′2i−1 + 4c2) = 0 since v(w′i−1) = v(w′i) = 0. Hence w′i−w′i−1 tends to 0, and
we are done.

For each P ∈ Cc,1, we will identify the fibre through P of f with the

generic fibre of the curve Ẽf(P ) given by (2.8) via (2.9); the fibre through P

of f ◦ φ3 we will identify with the generic fibre of the curve Ẽ(f◦φ3)(P ) in the
same way. It follows from Lemma 2.17(ii) that these identifications can be
made. With these conventions, it makes sense to speak of the levels of the
points in Cc,1 along f and f ◦ φ3.

Lemma 2.19. Let P be a point in Cc,1. The level of P along f is equal to
−1. The level of P along f ◦ φ3 is equal to −1.

Proof. The proof uses Lemma 2.17 throughout. We write P = (a0 : a1 : a2 :

a3) and λ = f(P ). We obtain a representative (ξ̃ : η̃ : ζ̃) of the image of P

on Ẽλ by substituting xi = ai into the equations (2.9). Using (2.9), we get

v(ξ̃) = v(a0+a2)−3v(c)−1 = −3v(c), v(η̃) = v(a1−a3)−3v(c)−1 = −3v(c),

where we have used the definition of Cc,1. To compute the valuation of

ζ̃ =
a1 + a3 + λ3

c
(a0 + a2)

2λ(c2 − λ8)
(2.18)
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note that Lemma 2.17(i) implies v(a1 +a3) = 1 < 2v(c)+4 = v(λ
3

c
(a0 +a2));

hence the valuation of the numerator is equal to 1. Therefore

v(ζ̃) = 1− v(2λ(c2 − λ8)) = 1− (1 + v(c) + 1 + 2v(c)) = −3v(c)− 1.

It follows that we have v(ξ̃/ζ̃) = v(η̃/ζ̃) = 1. Therefore the point P reduces

to the singular point on the special fibre of Ẽλ. Thus we have shown that
the level of P along f is −1.

The calculations for the level along f ◦φ3 go in exactly the same way as
the calculations for the level along f .

Proposition 2.20. Assume that there exists a rational point P0 ∈ Cc,1.
Then Vc(Q) is dense in Cc,1.

Proof. Let P2 ∈ Cc,1 be an arbitrary 2-adic point. Define λ0 = f(P0) and
π2 = (f ◦φ3)(P2). It follows from Lemma 2.17(ii) and 2.18 that there exists
a unique P1 ∈ Cc,1 such that f(P1) = λ0 and (f ◦ φ3)(P1) = π2. These
conditions express exactly that P1 lies on the same f -fibre as P0, and on the
same (f ◦ φ3)-fibre as P2. The levels of P0 and P1 along f are both equal
to −1 by Lemma 2.19. The levels of P1 and P2 along f ◦ φ3 are both equal
to −1 by Lemma 2.19. By Corollary 2.14, the points P0 and P1 lie on a
smooth fibre of f , and P1 and P2 lie on a smooth fibre of f ◦φ3. By Lemma
2.16, the rational points lie dense around P2.

2.6 Density in Ac
Assuming there is a rational point in Cc,1, we will show density of the rational
points in Ac.

Lemma 2.21. Let P = (a0 : a1 : a2 : a3) be a point in Ac. Write λ = f(P )
and µ = g(P ). Then the following statements are true.

(i) We have

v(a0 + a2) = 1, v(a0 − a2) = v(λ) + 1, v(a2
0 + a2

2) = 1,

as well as

v(a1 + a3) = v(λ) + 1− v(c), v(a1 − a3) = 1, v(a2
1 + a2

3) = 1.

(ii) We have v(λ) ≥ v(c) + 1 and v(µ) = 0.
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Proof. Since P is in Ac we have v(a0 + a2) = v(a1 − a3) = 1 by definition
of Ac, and this implies

v(a2
0 + a2

2) = v(a2
1 + a2

3) = 1,

since the square of the 2-adic unit ai is 1 (mod 8) for each i. This shows
(i) except for the second and fourth equality. Using (2.13) as in the proof
of Lemma 2.17, we get

v(a0 − a2) = v(a1 + a3) + v(c), (2.19)

which shows that v(λ) = v((a0 − a2)/(a1 − a3)) = v(a0 − a2) − 1, which
shows the second equality. If we combine this with (2.19), we get v(λ) =
v(a1 + a3) + v(c) − 1. This concludes the proof of the fourth equality and
therefore that of (i). Part (ii) is a direct consequence of part (i).

We have the following converse of Lemma 2.21(ii).

Lemma 2.22. Let λ0, µ0 ∈ Q2 satisfy v(λ0) ≥ v(c)+1 and v(µ0) = 0. Then
there exists a unique point P ∈ Ac such that f(P ) = λ0 and g(P ) = µ0.
Moreover, the dependence of P on λ0 and µ0 is continuous.

Proof. We rewrite (2.13) in terms of the homogeneous coordinates s0 =
x0 + x2, v0 = x0 − x2, s1 = x1 + x3, v1 = x1 − x3:

s0v0(s2
0 + v2

0) = −cs1v1(s2
1 + v2

1).

We are looking for a point with f(P ) = λ0 and g(P ) = µ0. We thus have
v0 = λ0v1 and s0 = µ0v1. In terms of w = s1/v1 we have to solve the
equation

λ0µ0(λ2
0 + µ2

0) = −cw(1 + w2).

Defining

a =
λ0µ0

c
(λ2

0 + µ2
0),

we can rewrite the equation as

w3 + w + a = 0.

Given a solution w0 ∈ Q2 to this equation, we get the point in Vc(Q2)
represented by the four-tuple

P0 = (λ0 + µ0 : w0 + 1 : −λ0 + µ0 : w0 − 1). (2.20)
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Note that we have v(a) > 0. By considering the Newton polygon of
w3 + w + a, we see that two of its zeros in Q2 have valuation 0. These do
not give rise to points in U ′c. The remaining zero w0 has positive valuation.
By Galois theory, we have w0 ∈ Q2. By the assumptions on λ0, µ0 and
the fact that v(w0) > 0, the four-tuple (2.20) represents a point in U ′c.
One can check that it in fact lies in Ac. For the P whose existence was
asserted in the lemma we may thus take P = P0. Finally, the fact that
P depends continuously on λ0 and µ0 is shown exactly as in the proof of
Lemma 2.18.

For each P ∈ Ac, we will identify f−1(f(P )) with the generic fibre of
(2.8) via (2.9). Note that this is the same choice that we made in section
2.5 for P ∈ Cc,1, so that it makes sense to compare levels along f of points
in Ac and Cc,1. We will identify the fibre g−1(g(P )) with the generic fibre
of (2.3) via (2.4). It follows from Lemma 2.21(ii) that these identifications
can be made. With these conventions, it makes sense to speak of the levels
of the points in Ac along f and g.

Lemma 2.23. Let P be a point in Ac and write λ = f(P ). The level of P
along f is equal to 0. The level of P along g is equal to v(λ)− v(c).

Proof. We write P = (a0 : a1 : a2 : a3). We obtain a representative (ξ̃ : η̃ : ζ̃)

of the image of P on Ẽλ by substituting xi = ai into the equations (2.9).
Using (2.9), we get

v(ξ̃) = v(a0+a2)−3v(c)−1 = −3v(c), v(η̃) = v(a1−a3)−3v(c)−1 = −3v(c),

where we have used the definition of Ac. To compute the valuation of

ζ̃ =
a1 + a3 + λ3

c
(a0 + a2)

2λ(c2 − λ8)
, (2.21)

note that Lemma 2.21(i) implies v(a1 + a3) = v(λ) + 1 − v(c) < 3v(λ) +
1− v(c) = v(λ

3

c
(a0 + a2)); hence the valuation of the numerator is equal to

v(a1 + a3). Therefore

v(ζ̃) = v(a1+a3)−v(2λ(c2−λ8)) = (v(λ)+1−v(c))−(v(λ)+1+2v(c)) = −3v(c).

It follows that we have v(ξ̃/ζ̃) = v(η̃/ζ̃) = 0. Therefore the point P reduces

to a non-singular point different from the identity on the special fibre of Ẽλ.
Thus we have shown that the level of P along f is 0.
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Set µ = g(P ). We obtain a representative (ξ : η : ζ) of the image of P
on Eµ by substituting xi = ai for i 6= 2 and x2 = −a2 into the equations
(2.4), and replacing λ by µ. We get

v(ξ) = v(a0 − a2)− 1− v(c) = v(λ)− v(c) ≥ 1

and
v(η) = v(a1 − a3)− 1 = 0.

From v(µ) = 0 and (2.19) we deduce

v(a1 + a3) = v

(
µ3

c
(a0 − a2)

)
,

hence we have, by formula (2.4),

v(ζ) > v(a1 + a3)− v(2µ(c2 − µ8)) = v(a1 + a3)− 1 > 0.

Since v(η) < v(ζ), the point P is mapped to (Eµ)1(Qp), and its level is
therefore v(ξ/η) = v(λ)− v(c).

Proposition 2.24. Assume that there is a rational point P0 ∈ Vc(Q) such
that P0 ∈ Cc,1. Then Vc(Q) is dense in Ac.

Proof. Let P0 be as in the statement of the proposition, and let P2 ∈ Ac
be an arbitrary 2-adic point. Define λ0 = f(P ) and µ2 = g(P2). We have
v(λ0) = v(c) + 1 by Lemma 2.17(ii) and v(µ2) = 0 by Lemma 2.21(ii).
It follows from Lemma 2.22 that there exists a unique P1 ∈ Ac such that
f(P1) = λ0 and g(P1) = µ2.

By Lemma 2.19 we have that the level of P along f is −1 and, by Lemma
2.23, the level of P1 along f is 0. Also by Lemma 2.23, the level of P1 along g
equals v(f(P1))−v(c) = 1 and level of P2 along g is v(f(P2))−v(c), which is
at least 1 by Lemma 2.21. The f -fibre through P1 is smooth since it equals
the f -fibre through P0, which is smooth by Corollary 2.14. Moreover, we
may assume that the g-fibre through P1 is smooth, since we may otherwise
replace P2 by a point lying arbitrarily close to it by Lemma 2.22. By Lemma
2.16, the rational points lie dense around P2.

2.7 Density in Bc,n for all n and in C ′c,n for

n ≥ 2

Assuming density of Vc(Q) in A′c, we show that the rational points on Vc
are dense in Bc,n for all n ≥ 1 and in C ′c,n for all n ≥ 2.
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Lemma 2.25. The following statements are true.

(i) Let P = (a0 : a1 : a2 : a3) be a point in A′c, where the ai are 2-adic
integers at least one of which is a unit. Write λ = f(P ). We have

v(a0 + a2) = v(c) + 1− v(λ), v(a0 − a2) = 1, v(a2
0 + a2

2) = 1

as well as

v(a1 + a3) = 1, v(a1 − a3) = 1− v(λ), v(a2
1 + a2

3) = 1.

(ii) Let P ∈ A′c and write λ = f(P ), µ = g(P ). Then we have v(λ) < 0
and v(µ) = v(c).

(iii) Let P = (a0 : a1 : a2 : a3) be a point in Bc,n for some integer n ≥ 1,
where the ai are 2-adic integers at least one of which is a unit. We
have

v(a0 − a2) = 1, v(a2
0 + a2

2) = 1

as well as

v(a1+a3) = v(a0+a2)−3n−v(c), v(a1−a3) = n+1, v(a2
1+a2

3) = 2n+1.

(iv) Let P ∈ Bc,n for some integer n ≥ 1. Write λ = f(P ). Then we have
v(λ) = −n.

(v) Let P = (a0 : a1 : a2 : a3) ∈ C ′c,n for some integer n ≥ 2, where the ai
are 2-adic integers at least one of which is a unit. We have

v(a0 + a2) = v(c) + 4n− 2, v(a0 − a2) = 1, v(a2
0 + a2

2) = 1

as well as

v(a1 + a3) = n, v(a1 − a3) = n, v(a2
1 + a2

3) = 2n.

(vi) Let P ∈ C ′c,n for some integer n ≥ 2. Write λ = f(P ). Then we have
v(λ) = 1− n.

Proof. Part (i) follows directly from Lemma 2.21(i). Part (ii) follows from
part (i). In part (iii), the first and fourth equality follow directly from the
definition of Bc,n. For the second and fifth, one uses that if a ∈ Z2, then
a2 ≡ 22v(a) (mod 22v(a)+3). The third equality follows from the others and
from (2.13). Part (iv) follows from part (iii). In part (v), the only non-
obvious equation is the first one: it follows from the others and (2.13). Part
(vi) follows from part (v).
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We have the following converse of Lemma 2.25(ii).

Lemma 2.26. Let λ0, µ0 ∈ Q2 satisfy v(λ0) < 0 and v(µ0) = v(c). Then
there exists a unique point P ∈ A′c such that f(P ) = λ0 and g(P ) = µ0.
Moreover, the dependence of P on λ0 and µ0 is continuous.

Proof. As in the proof of Lemma 2.22, we define

a =
λ0µ0

c
(λ2

0 + µ2
0).

Still as in the proof of Lemma 2.22, given a solution w0 to the equation

w3 + w + a = 0, (2.22)

we get the point in Vc(Q2) represented by the four-tuple

(λ0 + µ0 : w0 + 1 : −λ0 + µ0 : w0 − 1). (2.23)

Under the assumptions of the lemma, we have v(a) = 3v(λ0) < 0. If we put
w = λ0w

′, equation (2.22) transforms to

w′3 + λ−2
0 w′ + aλ−3

0 = 0, (2.24)

where aλ−3
0 ∈ Z∗2. By Hensel’s lemma, this has a solution w′0 ∈ Z∗2. More-

over, the three roots w′0, w
′
1, w

′
2 of (2.24) in Q2 reduce to the three zeros

of X3 + 1 in F2, only one of which lies in F2; therefore, w′0 is the unique
solution to (2.24) in Q2. We then have w0 = λ0w

′
0 with v(w0) = v(λ0) < 0.

The four-tuple (2.23) that we obtain has non-integral coordinates. Scaling
by λ−1

0 , we obtain the four-tuple

(µ0/λ0 + 1 : w′0 + λ−1
0 : µ0/λ0 − 1 : w′0 − λ−1

0 ),

which defines a point in U ′c, and one checks that it lies in A′c. For the
P whose existence was asserted in the lemma we may thus take P = P0.
Finally, the fact that P depends continuously on λ0 and µ0 follows as in the
proof of Lemma 2.18.

For a point P ∈ Vc(Q2) that is contained in A′c, in Bc,n for some n ≥ 1,
or in Cc,n for some n ≥ 2, we will identify f−1(f(P )) with the generic fibre

of the curve Êf(P ) given by (2.10) via (2.11). Since Lemma 2.25 shows that
v(f(P )) < 0 in each case, these identifications may be made. Accordingly,
the level along f of such a point P is well-defined.
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Lemma 2.27. Let P = (a0 : a1 : a2 : a3) ∈ Vc(Q2) be a point, where the ai
are 2-adic integers at least one of which is a unit.

(i) Assume that P ∈ A′c. The level of P along f is equal to 0.

(ii) Assume that P ∈ Bc,n for some n ≥ 1. The level of P along f is equal
to v(a1 + a3)− 1, which is an integer at least 2.

(iii) Assume that P ∈ C ′c,n for some n ≥ 2. The level of P along f is equal
to n− 1.

Proof. We write λ = f(P ). In all cases (i)–(iii), we obtain a representative

(ξ̂ : η̂ : ζ̂) of the image of P on Êλ by substituting xi = ai into the equations
(2.11). We have

v(ξ̂) = v

(
−a0 + a2

2λ4c
−
λ(a1 + a3) + λ4

c
(a0 + a2)

2(c2 − λ8)

)
. (2.25)

We will only need to compute this valuation for case (ii). We have
v
(
−a0+a2

2λ4c

)
= v(a0 + a2) − 1 − v(c) + 4n = v(a1 + a3) + 7n − 1 by Lemma

2.25(iii)–(iv). Both the terms λ(a1 + a3) and λ4

c
(a0 + a2) have valuation

equal to v(a1 + a3)− n by Lemma 2.25(iii)–(iv). Hence the second fraction
in (2.25) has valuation greater than or equal to v(a1 + a3) + 7n. Hence in

case (ii) we have v(ξ̂) = v(a1 + a3) + 7n− 1.
For

v(η̂) = v

(
a1 − a3

2λ6

)
,

we have in case (i) that v(η̂) = −7v(λ). In case (ii) we find v(η̂) = n+ 1−
(1− 6n) = 7n. In case (iii) we get v(η̂) = n− (1 + 6(1− n)) = 7n− 7.

Finally, we consider

v(ζ̂) = v

(
a1 + a3 + λ3

c
(a0 + a2)

2λ(c2 − λ8)

)
.

In case (i), we have v(a1 + a3) = 1 and v(λ
3

c
(a0 + a2)) = 2v(λ) + 1 < 1;

therefore, we have that v(ζ̂) = 2v(λ) + 1 − (1 + 9v(λ)) = −7v(λ). In
case (ii), both the terms a1 + a3 and λ3

c
(a0 + a2) have valuation equal to

v(a1 + a3), hence we have that v(ζ̂) ≥ v(a1 + a3) + 9n. In case (iii), we have
v(a1 + a3) = n and v(λ

3

c
(a0 + a2)) = 3(1−n)− v(c) + v(c) + 4n− 2 = n+ 1;

therefore, we have that v(ζ̂) = n− (10− 9n) = 10n− 10.
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We finish the proof for case (i) by observing that, in that case, we have

v(η̂/ζ̂) = 0. Therefore, in view of equation (2.10), we must have that the

level of P is 0. In case (ii) we see that v(η̂/ζ̂) ≤ −2n − v(a1 + a3), which

implies that the level of P is equal to v(ξ̂/ζ̂) = v(a1 + a3) − 1 ≥ 2, where
the last inequality follows from v(a1 +a3) ≥ 3. Finally, in case (iii), we have

v(η̂/ζ̂) = −3n+ 3, which shows that the level of P is equal to n− 1.

Proposition 2.28. Assume the density of Vc(Q) in A′c. The rational points
on Vc are dense in Bc,n for all integers n ≥ 1 and in C ′c,n for all integers
n ≥ 2.

Proof. Let P1 be any point in either Bc,n or C ′c,n, where n is as in the propo-
sition. Then if λ1 = f(P1), we have v(λ1) < 0 by Lemma 2.25(iv)+(vi).
By Lemma 2.26, there exists P0 ∈ A′c such that f(P0) = λ1 and g(P0) = c.
Note that P0 and P1 lie on the same fibre of f . Since the rational points on
Vc are dense in A′c, there is a sequence {P ′i}∞i=0 ⊂ Vc(Q) that converges to
P0. By Lemma 2.27, the level of P0 along f is 0 and the level of P1 along f
is at least 1. By Corollary 2.14, the f -fibre through P0 and P1 is smooth.
Hence we are done by Lemma 2.15.

2.8 Proof of the main theorem

Theorem 2.29. Let c be an element of the set

S = {2, 4, 6, 10, 12, 14, 18, 20, 22, 2/3, 2/5, 2/7, 2/9, 2/11} .

Then the set Vc(Q) lies dense in the set Vc(Q2), when this set is equipped
with the 2-adic topology.

Proof. In view of the discussion in section 2.1, it suffices to exhibit an
element Pc ∈ Vc(Q) that lies in Cc,1 for each c such that either c or 16/c lies
in S. This is done in the table below.
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Value of c Point Pc in Vc(Q) ∩ Cc,1
2 P2 = (489 : 684 : 577 : 662)
4 P4 = (61 : 168 : 237 : 58)
6 P6 = (67 : 16 : −37 : 42)
8 P8 = (257 : 22 : −223 : 124)
10 P10 = (1 : 4 : −7 : 2)
12 P12 = (359 : 112 : −361 : 106)
14 P14 = (11 : 4 : 3 : 6)
18 P18 = (9 : 16 : 33 : 2)
20 P20 = (309 : 132 : 37 : 166)
22 P22 = (347 : 76 : −269 : 146)
24 P24 = (11 : 308 : −533 : 274)
40 P40 = (29 : 12 : −3 : 14)
56 P56 = (43 : 68 : 139 : 62)
72 P72 = (269 : 52 : 109 : 94)
88 P88 = (1333 : 172 : 1109 : 374)
2/3 P2/3 = (39 : 4 : 31 : 38)
2/5 P2/5 = (31 : 8 : −25 : 34)
2/7 P2/7 = (349 : 124 : −347 : 194)
2/9 P2/9 = (3 : 16 : 11 : 2)
2/11 P2/11 = (179 : 76 : −53 : 274)
4/3 P4/3 = (171 : 88 : −101 : 158)
4/5 P4/5 = (79 : 452 : 415 : 262)
8/3 P8/3 = (19 : 4 : −13 : 14)
8/5 P8/5 = (5 : 24 : −27 : 2)
8/7 P8/7 = (599 : 2732 : 1591 : 2662)
8/9 P8/9 = (269 : 156 : 109 : 282)
8/11 P8/11 = (391 : 152 : −281 : 394)

Proof of Theorem 2.1. This follows from Theorem 2.29. �


