Beyond the Artifact
Digital Interpretation of the Past

Proceedings of CAA2004
Prato 13–17 April 2004

Edited by
Franco Niccolucci and Sorin Hermon
Content

Foreword
Franco Niccolucci and Sorin Hermon 9
The Etruscan Town on the Bisenzio – Geophysical Research and Applications
Gabriella Poggesi, Pasquino Pallecchi and Paolo Machetti 11

ARCHAEOLOGICAL THEORY

Archaeological Theory, Techniques and Technologies: Beyond Quantification and Visualization Methods
J. A. Barceló ... 19
New Technologies Applied to Artefacts: Seeking the Representation of a Column’s Capital
Mercedes Fariñas, Nieves Quesada, Miguel Alonso, Andrés Diez and CARPA 21
A Fuzzy Logic Approach to Reliability in Archaeological Virtual Reconstruction
Franco Niccolucci and Sorin Hermon ... 28
Chaos and Complexity Tools for Archaeology: State of the Art and Perspectives
Carlos Reynoso and Damian Castro ... 36
On the Frontier: Looking at Boundaries, Territoriality and Social Distance with GIS
Thomas G. Whitley .. 41

THE ARCHAEOLOGICAL RECORD

Holy Grail or Poison Chalice? Challenges in Implementing Digital Excavation Recording
Sarah Cross May and Vicky Crosby .. 49
The EKFRASYS: a New Proposal of an Archaeological Information System
Alfonso Santoriello and Francesco Scelza ... 55
To OO or not to OO? Revelations from Ontological Modelling of an Archaeological Information System
Paul Cripps and Keith May .. 59
Integration of Complementary Archaeological Sources
Martin Doerr, Kurt Schaller and Maria Theodoridou 64
Which Period is it? A Methodology to Create Thesauri of Historical Periods
Martin Doerr, Athina Kritsotaki and Stephen Stead 70
A Computer-Aided System for Dynamic Pottery Classification Using XML
Maria Bonghi Jovino, Giovanna Bagnasco Gianni, Lucio G. Perego,
Elisa Bertino, Pietro Mazzoleni and Stefano Valtolina 76
From XML-tagged Acquisition Catalogues to an Event-based Relational Database
Ellen Jordal, Jon Holmen, Stein A. Olsen and Christian-Emil Ore 81
ArchaeoCAD, ArchaeoMAP, ArchaeoDATA – An Integrated Archaeological Information System
Andreas Brunn and Martin Schaich .. 86
SIGGI-AACS, a Prototype for Archaeological Artifact Classification Using Computerized Agents
Robert Schlader, Skip E. Lohse, Corey Schou and Al Strickland A. 90
Breaking Down National Barriers: ARENA – A Portal to European Heritage Information
Claus Dam, Tony Austin and Jonathan Kenny 94
FCS _WORD_: Conceptual and Technical Framework for the Collaborative Documentation,
Management and Presentation of Cultural Statistics, Activities and Research on the Web
Nicolas Vernicos, Gerasimos Pavlogeorgatos, Evangelia Kavakli,
Dimitris C. Papadopoulos, Efthimios C. Mavrikas and Sophia Bakogianni 99
Artefacts: Starters for Standards
Adolph Guus Lange ... 103
From a Relational Database to an Integrated System: a Milan University Project
Glauco Mantegari and Tommaso Quirino ... 107
Between the Book and the Exhibition. Creating Archaeological Presentations Based on Database Information
Øyvind Eide, Jon Holmen, Anne Birgitte Høy-Petersen 111
Uroi Hill (Magura Uroiului) – The Beginning of an Interdisciplinary Research
Angelica Balos, Adriana Ardeu, Roxana Stancea and Cristina Mitar 113
Data Management of Preservation Activities on Archaeological Sites
Chiara Bergamaschi and Annamaria Rossi .. 116
ARCHEOLOGICAL LANDSCAPES AND GIS APPLICATIONS

New Approaches to the Study of Archaeological Landscapes — Session Introduction

Martijn van Leusen ... 121

Detection Functions in the Design and Evaluation of Pedestrian Surveys

E. B. Banning, A. Hawkins and S. T. Stewart ... 123

Fuzzy Logic Application to Artifact Surface Survey Data

Emeri Farinetti, Sorin Hermon and Franco Niccolucci 125

Scaling and Timing the Past for the Reconstruction of Ancient Landscape

Maurizio Cattani, Andrea Fiorini and Bernardo Rondelli 130

Human Space and Disadvantage in Settlement Distribution

A GIS Analysis on the Case of “ronchi” and Some New Considerations about the Approach

Alberto Monti .. 135

From Archaeological Sherds to Qualitative Information for Settlement Pattern Studies

Frédérique Bertoncello and Laure Nuninger ... 140

Calculating the Inherent Visual Structure of a Landscape (“Total Viewshed”) Using High-Throughput Computing

Marcos Llobera, David Wheatley, James Steele, Simon Cox and Oz Parchment 146

Mobility,Visibility and the Distribution of Schematic Rock Art in Central-Mediterranean Iberia

Sara Fairén .. 152

The Geographic Information System of Pescara Valley and the Settlement Patterns in the II Millenium BC.

Viviana Ardesia .. 156

Lands of the Middle Fiora Valley in Prehistory and Late Prehistory – from Survey to GIS

Albero Tagliabue, Nuccia Negroni Catacchio and Massimo Cardosa 162

Landscapes of the Past: The Maremma Regional Park and the Grosseto Coastal Belt – Methodology and Technical Procedures

Michele De Silva .. 166

From Iberian Oppidum to Roman Municipium – GIS Study of Ancient Landscape in Eastern Spain

Ignacio Grau Mira .. 171

Surveying Ashmounds

Integrated Data Collection for the Establishment of Site Life Cycles in Southern Deccan (India)

Ulla Rajala, Marco Madella and Ravi Korisettar ... 175

Understanding Interpretations of Landscape Research

Marina Gkiasta .. 179

Mapping the Domestic Landscape: GIS, Visibility and the Pompeian House

Michael Anderson ... 183

Counting the Stones: GIS as an Indispensable Tool for Intrasite Analysis

at the Ancient Maya City of Chunchucmil (Yucatan, Mexico)

Aline Magnoni .. 190

Lithics and Landscape: GIS Approaches to the Analysis of Lithic Artefact Scatters

John Pouncett ... 195

Intra-Site Analysis of the Palaeolithic Site of Isernia La Pineta (Molise, Italy)

Carlo Peretto, Marta Arzarello, Rosalia Gallotti, Giuseppe Lembo, Antonella Minelli and Ursula Thun Hohenstein ... 201

An Innovative Tool for Web-GIS Applications SVG and the Open Source Format

Laura Saffiotti, Francesco Iacotucci and Andrea D’Andrea 207

Monitoring Archaeological Sites along the New Via Egnatia

Dora Constantinidis .. 212

An User-Friendly Approach to GIS-Application: an Utility for the Study of Etruscan Cemetery of Pontecagnano (Italy)

Francesco Iacotucci and Carmine Pellegrino .. 217

Forestry GIS Applications – Protecting Archaeological Sites in Forested Areas

Pirjo Hamari .. 220

Intelligent Models and Ideal Cities: a Data Model for a Sustainable Urban Planning and Cultural Heritage Safeguard

Massimo Massussi, Paolo Massussi, Raffaele Piatti and Sonia Tucci 224
The Settlement Pattern of Ancient Icaria through a GIS Approach – A PhD Project (preliminary report)
Sophia Topouzi ... 228

Topoclimatic Models and Viewshed in Archaeological Visibility Studies
Mar Zamora ... 232

Global Access to Mediterranean Archaeology
Dora Constantinidis .. 237

UNDERWATER ARCHAEOLOGY

Constructing Real-Time Immersive Marine Environments
for the Visualization of Underwater Archaeological Sites
Paul Chapman, Warren Viant and Mitchell Munoko .. 245

Orthophoto Imaging and GIS for Seabed Visualization and Underwater Archaeology
Julien Scinturier, Pierre Drap, Anne Durand, Franca Cibecchini,
Nicolas Vincent, Odile Papini and Pierre Grussenmeyer 251

Innovative Technologies for the Investigation of Deep Water Archaeological Sites
Pamela Gambogi, Andrea Catti, Giuseppe Casalino, Alberto Rizzerio and Giancarlo Vettori 257

Underwater Archaeology: Available Techniques and Open Problems
in Fully Automated Search and Inspection
Andrea Catti, Giuseppe Casalino, Giuseppe Conte and Silvia Maria Zanoli ... 261

Putting Predictive Models Underwater, Challenges
New Perspectives and Potential of GIS Based Predictive Models in Submerged Areas
Penny Spikins and Morten Engen ... 266

PREDICTIVE MODELLING

The Application of Predictive Modelling in Archaeology: Problems and Possibilities
Hans Kamermans .. 273

An Application of Predictive Modelling in the Tiber Valley
R.E.Witcher and S.J.Kay ... 278

Imagining Calabria – A GIS Approach to Neolithic Landscapes
Some Critical Thoughts on Modelling the Effects of Agency
and Qualifying Landscapes in Terms of Human Activity
Doortje Van Hove .. 284

Modelling Mesolithic-Neolithic Land-Use Dynamics and Archaeological Heritage Management:
An Example from the Flevoland Polders (The Netherlands)
Hans Peeters ... 291

Regional Scale Predictive Modelling in North-Eastern Germany
Benjamin Ducke ... 296

Are Current Predictive Maps Adequate for Cultural Heritage Management?
The Integration of Different Models for Archaeological Risk Assessment
in the State of Brandenburg (Germany)
Ulla Münch ... 302

First Thoughts on the Incorporation of Cultural Variables into Predictive Modelling
Philip Verhagen, Hans Kamermans, Martijn van Leusen,
Jos Deeben, Daan Hallewas and Paul Zoetbrood 307

Re-Thinking Accuracy and Precision in Predictive Modeling
Thomas G. Whitley .. 312

VISUALIZATION, 3D AND VIRTUAL RECONSTRUCTIONS

Virtual Archaeology: Yesterday, Today, and Tomorrow
Donald H. Sanders .. 319

An Integrated Approach to Archaeology: From the Fieldwork to Virtual Reality Systems
Maurizio Forte, Sofia Pescarin, Eva Pietroni and Nicolò Dell’Unto .. 325

House of the Skeletons - A Virtual Way
Fernando Silva, Dino Rodrigues and Alexandrino Gonçalves 335

Computer Graphics and Virtual Reality: two Different Contributions in Archaeological Research
Sabina Viti ... 341
The Role of Scientific Reconstruction in Virtual Archaeology. Education, Communication and Valorization.
The “Pompeii - Insula del Centenario (IX 8) Project”
Daniela Scaglierini Corlaita, Antonella Coralini and Erika Vecchietti .. 347
The Virtual Trip Through The Medieval Torun – Possibilities of Using Open Source and Shareware Software
in Multimedia Projects and Archaeological Interactive, Virtual Reconstructions of Medieval Architecture
Lukasz Andrzej Czyzewski .. 351
A Multimedia 3D Game for Museums
R. Montes and F.J. Melero .. 355
Progressive Transmission of Large Archaeological Models
F.J. Melero, P. Cano and J.C. Torres .. 359
Archaeology – A Virtual Adventure
Juliane Lippok .. 363
Analysing Images of Archaeology in Entertainment Media
as a Means to Understanding and Meeting Public Expectations
Kathrin Felder .. 367
Virtual Reality at York: Vr and the Management Of Historic Sites
Stephen Dobson .. 372
3D Temporal Landscape: A New Medium to Access and Communicate Archaeological and Historical Contents
Tiziano Diamanti, Mauro Felicori, Antonella Guidazzoli, Maria Chiara Liguori and Sofia Pescarin .. 376
Photogrammetric Recording, Modeling, and Visualization of the Nasca Lines at Palpa, Peru: An Overview
Karsten Lambers, Martin Sauerbier and Armin Gruen .. 381
A Novel System for the 3D Reconstruction of Small Objects
Vassilios Tsoukas, Petros Patias and Paul Jacobs .. 388
Shortcomings of Current 3D Data Acquisition Technologies
for Graphical Recording of Archaeological Excavations
Geoff Avern .. 392
3D Scanning Technologies and Data Evaluation in an Archaeological Information System
Martin Schaich .. 396

QUANTITATIVE METHODS
Statistical and 3D Artifact Analysis – Session Overview
Uzy Smilansky .. 403
‘To Err is Human’, but to Really Foul Things up You Need a Computer
Clive Orton .. 404
Quantitative Measures of the Uniformity of Ceramics
Avshalom Karasik, Liora Bitton, Ayelet Gilboa, Ilan Sharon and Uzy Smilansky .. 407
Optimal Choice of Prototypes for Ceramic Typology
Uzy Smilansky, Itzhak Beit-Arieh, Avshalom Karasik, Ilan Sharon and Ayelet Gilboa .. 411
Computerised Geometric Analysis of a Spire Coming from a Gothic Tabernacle
Cédric Laugerotte and Nadine Warzée .. 415
Detection of Matching Fragments of Pottery
Martin Kampel and Robert Sablatnig .. 419
Breaking Down an Early Neolithic Palimpsest Site –
Some Notes on the Concept of Percolation Theory and the Understanding of Spatial Pattern Formation
Hans Peeters .. 423
Modelling the Archaeologist’s Thinking for the Automatic Classification of Uruk
Jamdat Nasr Seals Images
Sergio Camiz, Elena Rova and Vanda Tulli .. 429
Unsupervised and Supervised Classifications of Egyptian Scarabs
Based on the Qualitative Characters of Typology
Sergio Camiz and Sara Venditti .. 433
Everyday Life in Mediaeval Uthina
Maria Carmen Locci and Mariano Poreu .. 438
Kohonen Networks Applied to Rincón del Toro Rock Art Site Analysis
Damian Castro and Diego Diaz .. 444
Artificial Neural Networks Used in Forms Recognition of the Properties of Ancient Copper Based Alloys
Manuella Kadar, Ioan Ileana and Remus Joldes ... 448

Frequency Seriation and Temporal order – A Zooarchaeological Study
Juan A. Barceló and Laura Mameli ... 451

DAMAXIS - Danish Mesolithic Axes Information System
Vincent Mom and Jens Andresen ... 457

A 3-Dimensional Reconstruction of a Hellenistic Terracotta Plaque
Sam C. Carrier, Masana Amamiya and Susan Kane ... 463

GEOPHYSICS AND SURVEY
Investigation of Hungarian Early Copper Age Settlements through Magnetic Prospection and Soil Phosphate Techniques
Apostolos Sarris, Michael L. Galaty, Richard W. Yerkes, William A. Parkinson, Attila Gyucha, Doc M. Billingsley and Robert Tate ... 469

“Personal” Multistage Remote Sensing and Traditional Field Work to the Archaeological Analysis of Complex Landscapes: Relationships, Benefits and Actual Limitations
Stefano Campana ... 473

Landscape Archaeology in the Sesto Fiorentino Area: the Contribution of Aerial Photographs to the Study of Archaeological Contexts as Part of an Integrated Approach
Giovanna Pizziolo ... 479

Egialea Survey Project: Method and Strategies
Alfonso Santoriello, Francesco Scelza and Roberto Bove ... 484

CULTURAL HERITAGE – COMMUNICATION
Heritage Communication through New Media in a Museum Context
Diane Leboeuf ... 491

Digital Paths to Medieval Naantali
From Mobile Information Technology to Mobile Archaeological Information
Isto Vatanen, Hannele Lehtonen and Kari Uotila ... 495

Virtual Reality as a Learning Tool for Archaeological Museums
Laia Pujol ... 501

The Jerusalem Archaeological Park Website Project
Y. Baruch, R. Kudish-Vashdi and L. Ayzencot ... 507

PRAGRIS - Praetorium Agrippinae Roman Information System
Vincent Mom ... 511

Projects for the Presentation of the Natural and Cultural Heritage in Hungary
Elisabeth Jerem, Zsolt Mester and Zsolt Vasáros ... 517

Communication in Archaeology
The use of Multimedia Devices in Communicating Ancient Pasts
Cinzia Perlingieri and Nicola Lanieri ... 523

Communicating Archaeology via Multimedia
Multimedia Archaeology in Goseck, Germany
Peter F. Biehl ... 527
First Thoughts on the Incorporation of Cultural Variables into Predictive Modelling

Philip Verhagen¹, Hans Kamermans², Martijn van Leusen², Jos Deeben⁴, Daan Hallewas⁴ and Paul Zoetbrood⁴

¹RAAP Archeologisch Adviesbureau, Amsterdam, The Netherlands
²Faculty of Archaeology, Leiden University, Leiden, The Netherlands
³Institute of Archaeology University of Groningen, Groningen, The Netherlands
⁴State Service for Archaeological Heritage Management, Amersfoort, The Netherlands

Abstract. Predictive maps are increasingly used at all administrative levels for purposes of planning and determining policy priorities. However, current methods yield predictions with limited specificity. It is believed that methodological improvements, such as the use of non-environmental variables, will lead to a better performance of the models. The paper aims to show in what way cultural variables can actually be included in predictive modelling.

Keywords: Predictive modelling; Archaeological heritage management; Cultural variables; GIS

1. Introduction

Predictive modelling is a technique used to predict archaeological site locations on the basis of observed patterns and/or assumptions about human behaviour (Kohler and Parker 1986; Kvamme 1988, 1990). It was initially developed in the USA in the late 1970s and early 1980s where it evolved from governmental land management projects and is still regularly applied in cultural resources management. In the Netherlands, predictive modelling plays an important role in the decision making process for planning schemes on a municipal, provincial and national level.

However, in many other countries predictive modelling is far from being an accepted tool for archaeological heritage management (AHM), and even where it is used regularly, criticism is not uncommon (see e.g. Ebert, 2000; Whitley, in press; van Leusen et al., 2002). Much of this criticism is related to the uncritical application of so-called ‘inductive’ modelling techniques, in which the archaeological data set is used to obtain statistical correlations between the location of archaeological sites and environmental variables such as soil type, slope or distance to water. The performance of these models is in general not very good, partly because of the use of inappropriate statistical techniques, but mainly because of the biased nature of many archaeological data sets and the emphasis on environmental factors, which are easier to model than the more intangible social and cultural factors.

Wheatley (2003) even states that, as predictive modelling doesn’t work very well, it shouldn’t be used at all: “Archaeology should really face up to the possibility that useful, correlative predictive modelling will never work because archaeological landscapes are too complex or, to put it another way, too interesting.” His argument is mainly directed against the use of biased archaeological data sets, that will lead to the development of biased models that will in turn inevitably produce a positive feedback loop of even more biased data sets, as it is common practice to spend funds for AHM on the areas of ‘high archaeological value’. These areas will become better and better known, whereas the areas that are designated a ‘low value’ on the predictive map will largely be ignored in (commercial) archaeological research.

Verhagen (in press) however shows that the creation of biased data sets is not just a problem of predictive modelling, but a more general characteristic of the way in which archaeological data is collected. Most of the archaeological prospection done is not taking into account statistical sampling theory, and it can be suspected that many survey projects do not even have a strong archaeological hypothesis in mind. We believe that predictive modelling can serve as a means to make explicit the assumptions that are often made concerning the location preferences of prehistoric people. A predictive model should be based on a theory of site location preferences, that can be quantified and tested against (unbiased) archaeological data sets (see also Whitley, in press). It is clear that the cultural component of these theories is at the moment virtually absent in predictive modelling practice. This paper intends to show that it is not impossible to include these variables into predictive modelling, and this will hopefully lead to further research into this subject.

2. Predictive Modelling and Environmental Determinism

The practice of predictive modelling for AHM is, at the moment, environmental deterministic in outlook and design. The predominant use of environmental input variables as archaeological site predictors, such as soil type, groundwater table, distance to open water and the like, has however been criticized on a number of occasions in academic literature.

307
The problems associated with environmentally based predictive modelling (van Leusen et al. 2002) can be summarized as follows:

- Archaeological theorists reject an understanding of past human behaviour in purely ecological/economical terms, and argue that social and cognitive factors determine this behaviour to a large extent, and so should therefore be additional predictors for the presence and nature of archaeological remains;
- The maximum gain (a measure of the degree of effectiveness of the predictive archaeological model over a ‘by chance’ model) of current predictive models seems to be about 70% (Ebert 2000, Wheatley 2003), which implies that a significant proportion of archaeological site locations cannot be predicted using purely environmental datasets; therefore, models based on environmental factors alone cannot be adequate tools for the prediction of archaeological site location.
- Unfortunately, social and cognitive factors seem to be difficult to model, and have so far only been studied for a very limited range of questions, based on very specialised data sets (mostly relating to the ritual prehistoric landscapes of Wessex in England e.g. Wheatley 1995; 1996b).

The American archaeologist Timothy Kohler observed this as early as 1988. “Why are the social, political, and even cognitive/religious factors that virtually all archaeologists recognize as factors affecting site location and function usually ignored in predictive modelling?” (Kohler 1988: 19). He gives the answer a few pages later: “Given the subtleties and especially the fluidity of the socio-political environment, is it any wonder that archaeologists have chosen to concentrate on those relatively stable, ‘distorting’ factors of the natural environment for locational prediction?” (Kohler 1988: 21).

In essence, the situation has not changed since Kohler made these remarks. The present practice of predictive modelling is still very much environmentally deterministic. Cultural variables are not included in the models, resulting in predictions ultimately based on physical properties of the current landscape.

Practitioners of ‘traditional’ predictive modelling have mostly resisted the conclusion that their models will not be adequate because they lack the input of non-environmental data (e.g. Kvamme 1997). It is not because they do not want to include non-environmental factors; the problem is that these variables are regarded as being too abstract and intangible for use in a predictive model. Such models, so the argument goes, will be exponents of cognitive archaeology, often framed in post-processual rhetoric, rely on the same techniques that are used for old-fashioned, processual studies, up to the extent where they might even be called ‘cognitive deterministic’.

3. Cultural Variables: What are They?

It is important to realize that, when we are speaking of cultural variables, we can think of two ways of obtaining them. The first one is to consider them as measurable attributes of the archaeological sample that are not related to an environmental factor. So, instead of measuring for each individual site its soil type, elevation, distance from water and so on, we need to ask which properties of the site itself can be measured. These include properties like site location, size, functional type and period of occupation. These variables are clearly the expression of forms of social behaviour, although the interpretation of the specific behaviour involved may be subject to discussion. For ease of reference, these variables will be denominated cultural variables sensu stricto. In themselves, these variables are not extremely difficult to obtain, but the problems of analysing and interpreting archaeological site databases are manifold and must be addressed before these properties can actually be used for predictive modelling.

The second approach to defining cultural variables is to identify features of the landscape itself that can be interpreted as having cultural significance, such as sacred springs. These can be referred to as cultural landscape variables, and are not necessarily excluded from ‘traditional’ predictive modelling, but often are not recognized as constituting a ‘cultural’ variable. It can, in fact, be argued that all environmental variables have a cultural component, even though the emphasis in traditional predictive modelling is usually on subsistence economy rather than symbolic meanings.

In order to make further use of cultural variables in predictive modelling, it is necessary to transform these variables into continuous variables: for each single variable a value should be available at any location within the study area. This is
generally not a problem when using environmental data sets like soil maps or digital elevation models. Archaeological sites however are mostly represented as points, or in some cases as areas of a very limited extent. Similarly, landscape features that are considered to have cultural significance are in practice often also regarded as point-like, or at best linear in nature. A transformation is therefore necessary to use point-like or linear objects for predictive modelling. Two types of GIS techniques are currently available to perform this transformation: distance zonation and line-of-sight analysis. Distance zonation is customarily performed in environmental predictive modelling to obtain continuous variables from environmental features that are either linear (like rivers or coastlines) or point-like (springs). In some cases, cost surfaces (also known as friction surfaces or effort models) are calculated by assigning a weight to landscape features according to their supposed accessibility. This technique is applicable to environmental as well as cultural variables. Distance decay models are used less often, and are based on demographic and/or political-economic models borrowed from human geography (e.g. Renfrew and Level 1979). These models are specifically relevant for cultural variables ”, as they make it possible to incorporate the notion of interdependence of settlements (see e.g. Favory et al., 2003). A number of studies have appeared in recent years using line-of-sight analysis as a technique for obtaining continuous cultural variables, amongst others in attempts to demonstrate the ritual and symbolic meaning of the placement of monuments such as long barrows (Wheatley 1995; Gaffney et al. 1995). However, this type of analysis is certainly not restricted to cultural variables. A good example of the use of cultural variables ” and distance zonation is provided by Ridges (in press), who attempted to include the distance to rock art sites in a predictive model in NW Queensland (Australia) – and actually succeeded in improving the gain of the model. This success is probably due to the fact that the ritual sites used are fixed in space, and can be mapped with relative ease in the specific environmental situation. The rock art sites are typical examples of what Whitley (2000) refers to as ‘fixed point attractors’. The precise moment of their creation may be unknown, but their position and symbolic meaning remain stable during a long period of time, making them long-term attractors for human activity. In many other situations however, potential cultural variables are less stable, and cannot be mapped with ease. Examples of these include road networks, field systems, and the archaeological sites themselves, which all can have highly varying life-spans and may change in importance as attractors over time. In order to model the effects of long term land use development, it is necessary to use a technique that can deal with spatio-temporal variables, like dynamical systems modelling.

4. How to Proceed?

In order to remedy the current situation the following issues should be addressed:
- The identification of cultural variables that are significant for archaeological site location;

- The analysis of the utility of these variables for predictive modelling;
- The development and application of existing and new relevant modelling techniques; and
- The analysis of the performance of predictive models based on cultural variables compared to environmentally based models.

Following the recommendations in van Leusen et al. (2002), we suggest that four promising areas of research should be explored in order to improve on the current use of cultural variables in predictive modelling. These are:

1. A systematic analysis of the archaeological records and their aggregation into culturally meaningful entities

 It is necessary to analyse what information can be extracted from existing archaeological databases that can be used in the definition of cultural variables. The aggregation of the archaeological contents of find spots into meaningful archaeological entities is currently not standardized. A possible solution could be to design an expert system that can be used for the classification of find spots. Apart from defining meaningful archaeological entities, the aggregation of multiple find spots into single archaeological sites is an important issue where the utility of the archaeological database for predictive modelling is concerned. Thirdly, a tendency can be observed recently to combine multiple archaeological sites into ensembles, which effectively constitutes a step away from the site level and towards a regional, landscape-based concept of archaeological entities. The main question here is: what types of aggregates can we distinguish, and can these be used as cultural variables “?”

2. Analysis of the logistic position of settlements

 It is anticipated that one of the most important cultural variables that can be used is the logistic position of the archaeological site itself. It has been shown by many researchers that the position of a settlement in a logistic network determines to a large degree its size and duration of occupation (e.g. Durand-Dastès et al. 1998). The development of techniques to analyse the logistic position of settlements can be addressed by looking at recent work in human geography.

3. The continuity of the cultural landscape

 The cultural landscape has a historical dimension that strongly influences its use and usability. The existing cultural landscape influences the positioning of new sites. Kuna (1998), for example, mentions the importance of remnants of past landscapes on settlement location choice. Bell et al. (2002) demonstrated how later settlement in their Central Italian study area avoids areas settled in an earlier phase but conforms to paths from that earlier phase. Techniques to perform the long-term diachronical analysis needed for this type of modelling have been developed (e.g. by the Archaemodes project; van der Leeuw 1998; Favory et al. 2003)

4. Line-of-sight analysis

 In hilly areas and with certain site types that have a strong visual component (like burial mounds or megalithic tombs) line-of-sight analysis may be a type of analysis suitable for
predictive modelling (see van Leusen 2002 chapters 6 and 16). The techniques for performing this type of analysis are well established. It will be noticed that the four research topics mentioned here all focus on cultural variables”.

A thorough investigation of the use of cultural landscape variables would primarily involve the development of a decision rule framework that will incorporate the perception of the landscape into predictive modelling. In itself, this is an issue that merits attention, but the establishment of decision rules has always been at the heart of predictive modelling and is covered by a wide range of studies already. It would however be useful to start thinking about ways to model the perception of the landscape, as has been done by Whitley (2000), who tried to model the attractivity of the landscape for specific (economic) activities of Native American hunter-gatherers (see also Whitley, in press).

5. Conclusions

In a recent article on the use and abuse of statistical methods in archaeological site location modelling Woodman and Woodward (2002) come to the following conclusion: “There has been much criticism of locational studies since they are often based largely on environmental criteria. However, before researchers attempt to incorporate the more intangible social, cognitive, political and aesthetic factors, it would be wise to employ the appropriate statistical techniques required to deal with the complexities which already exist in even the most basic tangible and quantifiable environmental criteria”. Although we do not deny that many statistical problems still exist with regard to predictive modelling, we see no apparent reason why they should receive prime importance in further developing predictive modelling. In fact, the three main issues of statistical methodology, the development of adequate archaeological (and non-archaeological) data sets and the incorporation of non-environmental factors into the models are closely connected, and cannot be tackled in isolation. The papers presented in van Leusen and Kamermans (in press) show that new approaches to predictive modelling are starting to emerge, like exploring the potential of Bayesian statistical methods, using high resolution data for predictive modelling, and looking for ways to better embed predictive models into archaeological heritage management practice, for example by developing risk assessment methods. There is no doubt still a lot to do, and in this respect we have to disagree with Wheatley (2003) who argues that too much money is going into predictive modelling studies. He may be right that funding for GIS-related archaeological projects is mainly going into predictive modelling, but compared to the amount of money spent on all forms of prospection and excavation, investments made in predictive modelling seem relatively modest. Apart from that, investments for a thorough, scientific analysis of predictive modelling have been few and discontinuous. We hope to have demonstrated that incorporating cultural variables into predictive modelling can be done, even though it is impossible to present a comprehensive overview in these few pages. It is up to the scientific community and public institutions to decide if this line of research is worth investing in. However, if the three issues mentioned above (statistical improvements, quality of the archaeological data set and the development of non-environmentally based models) are not tackled in the years to come, predictive modelling will remain to be criticized as a tool that is of dubious scientific quality, and not even capable of providing clear answers on where to spend money for archaeological research.

References

First Thoughts on the Incorporation of Cultural Variables into Predictive Modelling

Rijksuniversiteit Groningen, Groningen.

