Beyond the Artifact
Digital Interpretation of the Past

Proceedings of CAA2004
Prato 13–17 April 2004

Edited by
Franco Niccolucci and Sorin Hermon
Content

Foreword
 Franco Niccolucci and Sorin Hermon ... 9

The Etruscan Town on the Bisenzio – Geophysical Research and Applications
 Gabriella Poggesi, Pasquino Pallecchi and Paolo Machetti 11

ARCHAEOLOGICAL THEORY
Archaeological Theory, Techniques and Technologies: Beyond Quantification and Visualization Methods
 J. A. Barcelò ... 19

New Technologies Applied to Artefacts: Seeking the Representation of a Column’s Capital
 Mercedes Farjas, Nieves Quesada, Miguel Alonso, Andrés Diez and CARPA 21

A Fuzzy Logic Approach to Reliability in Archaeological Virtual Reconstruction
 Franco Niccolucci and Sorin Hermon .. 28

Chaos and Complexity Tools for Archaeology: State of the Art and Perspectives
 Carlos Reynoso and Damian Castro .. 36

On the Frontier: Looking at Boundaries, Territoriality and Social Distance with GIS
 Thomas G. Whitley ... 41

THE ARCHAEOLOGICAL RECORD
Holy Grail or Poison Chalice? Challenges in Implementing Digital Excavation Recording
 Sarah Cross May and Vicky Crosby .. 49

The EKFRASYS: a New Proposal of an Archaeological Information System
 Alfonso Santoriello and Francesco Scelza .. 55

To OO or not to OO? Revelations from Ontological Modelling of an Archaeological Information System
 Paul Cripps and Keith May .. 59

Integration of Complementary Archaeological Sources
 Martin Doerr, Kurt Schaller and Maria Theodoridou .. 64

Which Period is it? A Methodology to Create Thesauri of Historical Periods
 Martin Doerr, Athina Kritsotaki and Stephen Stead ... 70

A Computer-Aided System for Dynamic Pottery Classification Using XML
 Maria Bonghi Jovino, Giovanna Bagnasco Gianni, Lucio G. Perego,
 Elisa Bertino, Pietro Mazzoleni and Stefano Valtolina .. 76

From XML-tagged Acquisition Catalogues to an Event-based Relational Database
 Ellen Jordal, Jon Holmen, Stein A. Olsen and Christian-Emil Ore 81

ArchaeoCAD, ArchaeoMAP, ArchaeoDATA – An Integrated Archaeological Information System
 Andreas Brunn and Martin Schaich .. 86

SIGGI-AACS, a Prototype for Archaeological Artifact Classification Using Computerized Agents
 Robert Schlader, Skip E. Lohse, Corey Schou and Al Strickland A. 90

Breaking Down National Barriers: ARENA – A Portal to European Heritage Information
 Claus Dam, Tony Austin and Jonathan Kenny ... 94

FCS _WORD_: Conceptual and Technical Framework for the Collaborative Documentation,
 Management and Presentation of Cultural Statistics, Activities and Research on the Web
 Nicolas Vernicos, Gerasimos Pavlogeorgatos, Evangelia Kavakli,
 Dimitris C. Papadopoulos, Efthimios C. Mavrikas and Sophia Bakogianni 99

Artefacts: Starters for Standards
 Adolph Guus Lange ... 103

From a Relational Database to an Integrated System: a Milan University Project
 Glauco Mantegari and Tommaso Quirino .. 107

Between the Book and the Exhibition. Creating Archaeological Presentations Based on Database Information
 Øyvind Eide, Jon Holmen, Anne Birgitte Høy-Petersen 111

Uroi Hill (Magura Uroiului) – The Beginning of an Interdisciplinary Research
 Angelica Balos, Adriana Ardeu, Roxana Stancescu and Cristina Mitar 113

Data Management of Preservation Activities on Archaeological Sites
 Chiara Bergamaschi and Annamaria Rossi ... 116
Intelligent Models and Ideal Cities:

An User-Friendly Approach to GIS-Application:

Monitoring Archaeological Sites along the New Via Egnatia

An Innovative Tool for Web-GIS Applications SVG and the Open Source Format

Intra-Site Analysis of the Palaeolithic Site of Isernia La Pineta (Molise, Italy)

Lithics and Landscape: GIS Approaches to the Analysis of Lithic Artefact Scatters

Counting the Stones: GIS as an Indispensable Tool for Intrasite Analysis

Mapping the Domestic Landscape: GIS, Visibility and the Pompeian House

Understanding Interpretations of Landscape Research

Surveying Ashmounds

From Iberian Oppidum to Roman Municipium – GIS Study of Ancient Landscape in Eastern Spain

Lands of the Middle Fiora Valley in Prehistory and Late Prehistory – from Survey to GIS

Landscapes of the Past: The Maremma Regional Park and the Grosseto Coastal Belt – Methodology and Technical Procedures

From Iberian Oppidum to Roman Municipium – GIS Study of Ancient Landscape in Eastern Spain

Surveying Ashmounds

Integrated Data Collection for the Establishment of Site Life Cycles in Southern Deccan (India)

Understanding Interpretations of Landscape Research

Mapping the Domestic Landscape: GIS, Visibility and the Pompeian House

Counting the Stones: GIS as an Indispensable Tool for Intrasite Analysis

at the Ancient Maya City of Chunchucmil (Yucatan, Mexico)

Lithics and Landscape: GIS Approaches to the Analysis of Lithic Artefact Scatters

Intra-Site Analysis of the Palaeolithic Site of Isernia La Pineta (Molise, Italy)

An Innovative Tool for Web-GIS Applications SVG and the Open Source Format

Monitoring Archaeological Sites along the New Via Egnatia

Intelligent Models and Ideal Cities:

a Data Model for a Sustainable Urban Planning and Cultural Heritage Safeguard

ARCHAEOLOGICAL LANDSCAPES AND GIS APPLICATIONS

New Approaches to the Study of Archaeological Landscapes – Session Introduction

Detection Functions in the Design and Evaluation of Pedestrian Surveys

Fuzzy Logic Application to Artifact Surface Survey Data

Scaling and Timing the Past for the Reconstruction of Ancient Landscape

Human Space and Disadvantage in Settlement Distribution

From Archaeological Sherds to Qualitative Information for Settlement Pattern Studies

Calculating the Inherent Visual Structure of a Landscape (‘Total Viewshed’) Using High-Throughput Computing

Mobility, Visibility and the Distribution of Schematic Rock Art in Central-Mediterranean Iberia

The Geographic Information System of Pescara Valley and the Settlement Patterns in the II Millenium BC.

From Iberian Oppidum to Roman Municipium – GIS Study of Ancient Landscape in Eastern Spain

Lands of the Middle Fiora Valley in Prehistory and Late Prehistory – from Survey to GIS

Methodology and Technical Procedures

Ulla Rajala, Marco Madella and Ravi Korisettar

Integrated Data Collection for the Establishment of Site Life Cycles in Southern Deccan (India)

Understanding Interpretations of Landscape Research

Marina Gkiasta

Mapping the Domestic Landscape: GIS, Visibility and the Pompeian House

Counting the Stones: GIS as an Indispensable Tool for Intrasite Analysis

at the Ancient Maya City of Chunchucmil (Yucatan, Mexico)

Lithics and Landscape: GIS Approaches to the Analysis of Lithic Artefact Scatters

Intra-Site Analysis of the Palaeolithic Site of Isernia La Pineta (Molise, Italy)

An Innovative Tool for Web-GIS Applications SVG and the Open Source Format

Monitoring Archaeological Sites along the New Via Egnatia

Intelligent Models and Ideal Cities:

a Data Model for a Sustainable Urban Planning and Cultural Heritage Safeguard

Massimo Massussi, Paolo Massussi, Raffaele Piatti and Sonia Tucci
Artificial Neural Networks Used in Forms Recognition of the Properties of Ancient Copper Based Alloys
Manuella Kadar, Ioan Ileana and Remus Joldes ... 448

Frequency Seriation and Temporal order – A Zooarchaeological Study
Juan A. Barceló and Laura Mameli ... 451

DAMAXIS - Danish Mesolithic Axes Information System
Vincent Mom and Jens Andresen ... 457

A 3-Dimensional Reconstruction of a Hellenistic Terracotta Plaque
Sam C. Carrier, Masana Amamiya and Susan Kane ... 463

GEOPHYSICS AND SURVEY
Investigation of Hungarian Early Copper Age Settlements through Magnetic Prospection and Soil Phosphate Techniques
Apostolos Sarris, Michael L. Galaty, Richard W. Yerkes, William A. Parkinson, Attila Gyucha, Doc M. Billingsley and Robert Tate ... 469

“Personal” Multistage Remote Sensing and Traditional Field Work to the Archaeological Analysis of Complex Landscapes: Relationships, Benefits and Actual Limitations
Stefano Campana ... 473

Landscape Archaeology in the Sesto Fiorentino Area: the Contribution of Aerial Photographs to the Study of Archaeological Contexts as Part of an Integrated Approach
Giovanna Pizziolo ... 479

Egialea Survey Project: Method and Strategies
Alfonso Santoriello, Francesco Scelza and Roberto Bove ... 484

CULTURAL HERITAGE – COMMUNICATION
Heritage Communication through New Media in a Museum Context
Diane Leboeuf ... 491

Digital Paths to Medieval Naantali From Mobile Information Technology to Mobile Archaeological Information
Isto Vatanen, Hannele Lehtonen and Kari Uotila ... 495

Virtual Reality as a Learning Tool for Archaeological Museums
Laia Pujol ... 501

The Jerusalem Archaeological Park Website Project
Y. Baruch, R. Kudish-Vashdi and L. Ayzenct ... 507

PRAGRIS - Praetorium Agrippinae Roman Information System
Vincent Mom ... 511

Projects for the Presentation of the Natural and Cultural Heritage in Hungary
Elisabeth Jerem, Zsolt Mester and Zsolt Vásáros ... 517

Communication in Archaeology The use of Multimedia Devices in Communicating Ancient Past
Cinzia Perlingieri and Nicola Lanieri ... 523

Communicating Archaeology via Multimedia Multimedia Archaeology in Goseck, Germany
Peter F. Biehl ... 527
Predictive Modelling
The Application of Predictive Modelling in Archaeology: Problems and Possibilities

Hans Kamermans

Faculty of Archaeology, Leiden University, Leiden, The Netherlands
h.kamermans@arch.leidenuniv.nl

Abstract. Predictive modelling is a technique used to predict archaeological site locations in a region on the basis of observed patterns or on assumptions about human behaviour. The application of predictive modelling has given rise to considerable academic debate. This paper identifies some problems with predictive modelling and mentions possible solutions.

Keywords: Predictive modelling; Archaeological heritage management; GIS

1. Introduction

The analysis of human site location in the past has always been an important topic in archaeology. Over the years the application of predictive modelling has made major contributions to this study. One of the first definitions of predictive modelling is by Kohler and Parker (1986: 400): “Predictive locational models attempt to predict, at a minimum, the location of archaeological sites or materials in a region, based either on a sample of that region or on fundamental notions concerning human behavior”. Nowadays the two main reasons for applying predictive modelling in archaeology are:

To predict archaeological site locations to guide future developments in the modern landscape; an archaeological heritage management application.

To gain insight into former human behaviour in the landscape; an academic research application.

2. History

Predictive modelling was initially developed in the USA in the late 1970s and early 1980s, where it evolved from governmental land management projects (Kohler 1988). Today it is widely used in the USA (various examples in Wescott and Brandon 2000), Canada (Dalla Bona 2000) and many countries in Europe (e.g. Deeben et al. 2002; Münch 2003).

From the start the application of predictive modelling gave rise to considerable academic debate. The material deposits of this debate can be found in articles in conference proceedings and scientific journals (see e.g. Carr 1985; Church et al. 2000; Ebert 2000; Harris and Lock 1995; Kamermans and Wansleeben 1999; Kamermans et al. 2004; Van Leusen 1995, 1996; Lock and Harris 2000; Savage 1990; Verhagen et al. 2000; Wheatley 2004) but also in conference proceedings devoted entirely to the subject (Judge and Sebastian 1988; Wescott and Brandon 2000; Van Leusen and Kamermans in press; Kunow and Müller in press; Mehrer and Wescott in press).

3. Problems and Solutions

In this debate six major problem areas can be identified that need to be better understood in order to guide the future development of predictive modelling (Kamermans et al. 2004). These problems all have implications for the quality, applicability and reliability of the current predictive maps:

- Quality and quantity of archaeological input data
- Relevance of the environmental input data
- Lack of temporal and/or spatial resolution
- Use of spatial statistics
- Testing of predictive models
- Need to incorporate social and cultural input data

Many of these problems were discussion points immediately from the introduction of predictive modelling in archaeology. Sebastian and Judge wrote in 1988 on the first page of the first chapter of their book Quantifying the Present and Predicting the Past (Judge and Sebastian 1988): “One of the more interesting developments in the field of archaeology in the recent past is the emergence of predictive modeling as an integral component of the discipline. Within any developing and expanding field, one may expect some initial controversy that will, presumably, diminish as the techniques are tested, refined, and finally accepted. We are still very much in the initial stages of learning how to go about using predictive modeling in archaeology,.....” (Sebastian and Judge 1988: 1). More than 15 years later it looks as if this quote still describes the present situation. The controversy continues and we are still refining and testing the technique. Predictive modelling is far from universally accepted. But are we making progress in the problem areas mentioned above? Some recent attempts are worth mentioning here.

The first ones are on the topics quality and quantity of archaeological input data and the relevance of environmental input data (covering the first two problem areas). In many countries archaeologists are working hard to improve the quality and quantity of archaeological and environmental input data and to make these data available in a digital format. Examples are ARCHIS, the national archaeological GIS of the Netherlands (e.g. Deeben et al. 2002), VIVRE, a similar project in Luxembourg, and various initiatives in Germany.
(e.g. Ducke and Münch in press; Münch 2003, this volume). An example of more fundamental research into the quality of input data is by Philip Verhagen (Verhagen in press b; Verhagen and Tol 2004) who discusses the role of augering in archaeological prospection. Almost all archaeologists employing predictive modelling are convinced of the importance of introducing a temporal and spatial resolution in predictive models (e.g. Peeters in press, this volume; Verhagen and McGlade 1997). The problem with this approach in heritage management are the greater costs of this type of approach.

The use of spatial statistics and the testing of predictive models has been discussed for more than 20 years (e.g. Kvamme 1988, 1990; Parker 1985; Woodman and Woodward 2002). However we can still expect progress in this field. Some researchers think that the use of a Bayesian approach in spatial statistics looks very promising (Van Dalen 1999; Millard in press; Verhagen in press a), others believe that using the Dempster-Shafer theory will solve at least some of the problems that we have in predictive modelling with uncertainties (Ducke this volume; Ejstrud in press a, in press b).

The last topic, the need to incorporate social and cultural input data, is a difficult one. Predictive modelling, especially when performed with the aid of a GIS, has been accused of environmental determinism (Gaffney and Van Leusen 1995; Kvamme 1997; Wheatley 1999, 2004). For years almost all archaeologists have been agreeing that you cannot study past human behaviour in purely ecological/economical terms and that social and cognitive factors determine this behaviour to a large extent (e.g. Binford 1983; Carlstein 1982; Ellen 1982; Jochim 1976). These factors should therefore be additional predictors in the process of predictive modelling (Verhagen et al. this volume). Modern landscape archaeology gives us much insight into human social and cultural behaviour in the landscape (Bender 1993; Tilley 1994), but to incorporate these variables into models is a different question. Examples are given by Ridges (in press), Staničić and Kvamme (1999) and Van Hove (this volume). Most promising is the work by Thomas Whitley, who recently published a number of papers addressing the more fundamental aspects of ‘cognitive’ predictive modelling (Whitley 2000, 2002 a, 2002 b, 2003, 2004, in press a, in press b, this volume). One problem is that most examples of the incorporation of social and cognitive variables have an ethno-historical and not an archaeological origin.

Recently two articles have been published that argue that the assumptions of certain kinds of predictive models and the purposes for which they were originally intended. His conclusion is that in many cases it is too costly or even impossible to do a correlative predictive model and that ultimately the resulting model does not provide better insight into site placement processes than intuition.

4. Conclusion

The first researchers to apply predictive modelling in archaeology were very much aware of at least some of the problems mentioned above (e.g. Parker 1985). It was originally expected that predictive modelling would allow “a broad range of potential constraints on human settlement decisions to be evaluated for their importance: subsistence, constructional, psychological, social and other factors” (Carr 1985: 117). This was seen as a step forward from previous decision-making analyses of prehistoric settlement choice (e.g. Binford 1980; Jochim 1976; Keene 1981) since they have been limited to “the investigation of potential causal factors in the subsistence domain” (Carr 1985: 117). Sebastian and Judge (1988: 4) thought that the “emphasis on descriptive models will and should eventually be replaced by an emphasis on models that are derived from our understanding of human behavior and cultural systems, models with explanatory content”. It looks as if in the last twenty years progress has been made on details but that we have not been able to solve the major problems. In my mind there is no doubt that predictive modelling is a valuable tool for academic archaeological research. It can give insight into human behaviour in the past
in general and in past land use in particular. But we should be more critical about the use in current archaeological heritage management. Certainly in Europe with its complex archaeological record, predictive modelling is not a good tool for identifying areas with a high archaeological ‘value’. The current models are neither methodologically nor theoretically sound, their performance is poor and to improve them (if at all possible) would make them too costly for archaeological heritage management purposes. Predictive models should not reach land managing officials and certainly not the planners. Their only role should be in an initial phase, to aid archaeologists to stratify an area in order to plan various forms of archaeological prospection on the basis of a good sampling design.

References

Ducke, B., this volume. Regional scale archaeological predictive modelling in north-eastern Germany.

Münch, U., this volume. Are current predictive maps sufficient for cultural heritage management? The integration of different models for archaeological risk assessment in Brandenburg (Germany).

Peeters, H., this volume. Modelling Mesolithic-Neolithic land-use dynamics and archaeological heritage management: an example from the Flevoland polders Netherlands.

Whitley, T. G., this volume. Re-thinking Accuracy and Precision in Predictive Modeling.

277