The handle http://hdl.handle.net/1887/20325 holds various files of this Leiden University dissertation.

Author: Grabe, Immo
Title: Static analysis of unbounded structures in object-oriented programs
Issue Date: 2012-12-19
Appendix A

Proofs

A.1 Wellformedness of generated sequences

In this section we present an extensive proof of Theorem 3.4.2.

Proof: We prove this by induction on the length of the derivation. We treat the following cases:

Let $I_c = \emptyset$ and $t_c \in L$ in the following derivation

$$(I, L) : G \cup \{S^t\} \Rightarrow t^m_r (I \cup \{t_c\}, L) : G \cup \{S^t\} \Rightarrow * t^m_r W$$

(where m is a synchronised method of c). By the induction hypothesis we have that

- W is synchronised and
- $I \cup \{t_c\} \cup \text{Lock}(W) = L$.

It follows that $t^m_r W$ is synchronised and that $I \cup \text{Lock}(t^m_r W) = I \cup \{t_c\} \cup \text{Lock}(W) = L$.

Let $I_c = L_c = \emptyset$ in the following derivation

$$(I, L) : G \cup \{B^t\} \Rightarrow t^m_r (I \cup \{t_c\}, L \cup \{t_c\}) : G \cup \{r^t\} \Rightarrow * t^m_r W$$

(where m is a synchronised method of c). By the induction hypothesis we have that

- W is synchronised and
- $I \cup \{t_c\} \cup \text{Lock}(W) = L \cup \{t_c\}$.
It follows that \(t_r^m W \) is synchronised and that \(I \cup \text{Lock}(t_r^m W) = I \cup \text{Lock}(W) = L \) (note that \(I_c = L_c = \emptyset \) and in \(t_r^m W \) all calls by \(t \) have a matching return, so \(\text{Lock}(t_r^m W) = \text{Lock}(W) \)).

Next we treat the case

\[
(I, L) : G \cup \{r^t\} \Rightarrow (I, L) : G \cup \{B^t\} t_r \Rightarrow^* W t_r
\]

By the induction hypothesis we have that

- \(W \) is synchronised and
- \(I \cup \text{Lock}(W) = L \).

So it suffices to observe that, since there exist no pending calls of \(t \) in \(W \), we have \(\text{Lock}(W t_r) = \text{Lock}(W) \).

As a final case we treat the derivation:

\[
(I, L) : G_1 \circ G_2 \Rightarrow (I, L') : G_1 (L', L) : G_2 \Rightarrow^* W
\]

This derivation is decomposed to \((I, L') : G_1 \Rightarrow^* W_1 \) and \((L', L) : G_2 \Rightarrow^* W_2\), where \(W = W_1 W_2 \). By the induction hypothesis we have that

- \(W_1 \) and \(W_2 \) are synchronised and
- \(I \cup \text{Lock}(W_1) = L' \) and \(L' \cup \text{Lock}(W_2) = L \).

We first argue that \(W = W_1 W_2 \) is synchronised. Let \(t_r^m \) be a synchronised call in \(W \), with \(m \) a synchronised method of \(c \). If \(t_r^m \) appears in \(W_1 \) then there exists no preceding pending call to a synchronised method of \(c \) by another thread because \(W_1 \) is synchronised. On the other hand, if \(t_r^m \) appears in \(W_2 \) then there exists no preceding pending call (to a synchronised method of \(c \)) by another thread in \(W_2 \) because \(W_2 \) is synchronised. There also does not exist such a call by a thread \(t' \) different from \(t \) in \(W_1 \) because \(I \cup \text{Lock}(W_1) = L' \) implies \(t'_c \in L' \), which in turn rules out the call \(t_r^m \) because \(W_2 \) is synchronised.

Furthermore, if \(t_c \in I \) then there exists no call in \(W \) to a synchronised method of \(c \) by another thread because both \(W_1 \) and \(W_2 \) are synchronised.

Finally, \(I \cup \text{Lock}(W) = I \cup \text{Lock}(W_1) \cup \text{Lock}(W_2) = L' \cup \text{Lock}(W_2) = L \). Note that indeed \(\text{Lock}(W) = \text{Lock}(W_1) \cup \text{Lock}(W_2) \) because if \(W_2 \) contains a matching return \(t_r \) for a pending call \(t_r^m \) in \(W_1 \) then \(r^t \in G_2 \). But this is ruled out by \((I, L) : G_1 \circ G_2 \Rightarrow (I, L') : G_1 (L', L) : G_2 \) because \(r^t \) cannot be generated by a split. \(\Box \)
A.2 Existence of derivation

In this section we present an extensive proof of Lemma 3.5.1.

Proof: We prove the lemma by induction on the length of the word W.

Base Case $W = \epsilon$ is straightforward by application of rule $(I, I) : G ::= \epsilon$

Induction Step Let $W = w_1, \ldots, w_n, w_{n+1}$ be the well-formed synchronised sequence. Since w_{n+1} can be either a call or a return there are two cases to deal with. According to the induction hypothesis there exists a well-formed sequence w'_1, \ldots, w'_n such that $G_0 \Rightarrow^* w'_1, \ldots, w'_n$, and $w'_1, \ldots, w'_n \approx w_1, \ldots, w_n$.

First we consider the case that w_{n+1} is a method call t^m_r. We prefix the derivation $G_0 \Rightarrow^* w'_1, \ldots, w'_n$ by a composition step: $G_0 \Rightarrow G_0 G_0 \Rightarrow^* w'_1, \ldots, w'_n G_0$, and apply the rules $G_0 ::= t^m_r G_0$ and $G_0 ::= \epsilon$ to obtain $G_0 \Rightarrow^* w'_1, \ldots, w'_n, w_{n+1}$.

The proof of the equivalence $w'_1, \ldots, w'_n, w_{n+1} \approx w_1, \ldots, w_n, w_{n+1}$ is straightforward. Appending the same call to both sequences w'_1, \ldots, w'_n and w_1, \ldots, w_n preserves the equality of projection and the equality of the lock sets.

Next we consider the case that w_{n+1} is a return t_r. Let $w'_i = t^m_r$ be the matching call in w'_1, \ldots, w'_n. For this call we can decompose the derivation into $G_0 \Rightarrow^* \ldots G \cup \{S^t\} \ldots \Rightarrow \ldots t^m_r G \cup \{S^t\} \ldots \Rightarrow^* w'_1, \ldots, w'_n$. In this derivation we replace the step $\ldots G \cup \{S^t\} \ldots \Rightarrow \ldots t^m_r G \cup \{S^t\} \ldots$ by the following sequence of steps

$$\ldots G \cup \{S^t\} \ldots \Rightarrow \ldots G \cup \{B^t\} \ldots \Rightarrow \ldots t^m_r G \cup \{r^t\} \ldots \Rightarrow \ldots t^m_r G \cup \{B^t\} \ldots$$

Note that in the derivation $\ldots t^m_r G \cup \{S^t\} \ldots \Rightarrow^* w'_1, \ldots, w'_n$ the non-terminal S^t can be replaced by B^t since after the call t^m_r the thread t only generates a balanced sequence of calls and returns. Therefore we obtain a derivation

$$G_0 \Rightarrow^* w'_1, \ldots, w'_i, w'_{i+1}, \ldots, w'_k, t_r, w'_k+1, \ldots, w'_n$$

where $G \cup \{B^t\} \Rightarrow^* w'_{i+1} \ldots w'_k$. Due to the nested nature of the method calls (and the grammar rules) t_r is added to w'_1, \ldots, w'_n in such a way that it appears at the end of the projection of $w'_1, \ldots, w'_i, w'_{i+1}, \ldots, w'_k, t_r, w'_k+1, \ldots, w'_n$ to t like it does for the projection of w'_1, \ldots, w'_n, t_r to t preserving the equality of the projections. Since the same return is added to both sequences the equality of the lock sets is preserved. This establishes $w'_1, \ldots, w'_i, w'_{i+1}, \ldots, w'_k, t_r, w'_k+1, \ldots, w'_n \approx w'_1, \ldots, w'_n, t_r$.

\[
\square
\]
APPENDIX A. PROOFS

A.3 Soundness of lock handling

In this section we present an extensive proof of Lemma Lemma 3.5.2.

Proof: Instead of proving the lemma directly we prove a more general statement: If $G_0 \Rightarrow^* W$ with W synchronised with respect to I, then $(I, I \cup \text{Lock}(W)) : G_0 \Rightarrow^* W$.

We prove the lemma by induction on the length of the derivation $G_0 \Rightarrow^* W$.

Base Case $G ::= \epsilon$ is straightforward by application of rule $(I, I) : G ::= \epsilon$.

Induction Step We first treat the following cases of synchronised method calls and returns:

Pending Synchronised Call Let m be a synchronised method in class c and $G \cup \{S^t\} \Rightarrow t^m_r G \cup \{S^t\} \Rightarrow^* t^m_r W$ with $t^m_r W$ is synchronised with respect to I. Due to t^m_r being a pending call we derive that W is synchronised with respect to $I \cup \{t_c\}$. By the induction hypothesis we get $(I \cup \{t_c\}, I \cup \{t_c\} \cup \text{Lock}(W)) : G \cup \{S^t\} \Rightarrow^* W$. By application of rule $(I, I \cup \text{Lock}(W)) : G \cup \{S^t\} ::= (I, I \cup \text{Lock}(W)) : G \cup \{S^t\}$ in case $t_c \in I_c$, resp. application of rule $(I, I \cup \text{Lock}(W)) : G \cup \{S^t\} ::= (I \cup \{t_c\}, I \cup \text{Lock}(W)) : G \cup \{S^t\}$ with $t_c \in \text{Lock}(W)$ otherwise, we get a derivation $(I, I \cup \text{Lock}(W)) : G \cup \{S^t\} \Rightarrow^* t^m_r W$.

Matching Synchronised Call For the next case let m be a synchronised method in class c and $G \cup \{B^t\} \Rightarrow t^m_r G \cup \{B^t\} \Rightarrow^* t^m_r W$ with $t^m_r W$ is synchronised with respect to I. Due to $t^m_r W$ being synchronised with respect to I we conclude W is synchronised with respect to $I \cup \{t_c\}$. By the induction hypothesis we get $(I \cup \{t_c\}, I \cup \{t_c\} \cup \text{Lock}(W)) : G \cup \{r^t\} \Rightarrow^* W$. By application of rule $(I, I \cup \text{Lock}(W)) : G \cup \{B^t\} ::= (I, I \cup \text{Lock}(W)) : G \cup \{r^t\}$ in case $t_c \in I_c$, resp. application of rule $(I, I \cup \text{Lock}(W)) : G \cup \{B^t\} ::= (I \cup \{t_c\}, I \cup \{t_c\} \cup \text{Lock}(W)) : G \cup \{r^t\}$ otherwise, we get a derivation $(I, I \cup \text{Lock}(W)) : G \cup \{B^t\} \Rightarrow^* t^m_r W$.

Return of a Synchronised Method For the next case let t_r be a return to a call of a synchronised method in class c and $G \cup \{r^t\} \Rightarrow G \cup \{B^t\} t_r \Rightarrow^* W t_r$ with $W t_r$ is synchronised with respect to I. Due to $t^m_r W$ being synchronised with respect to I we conclude W is synchronised with respect to I. By the induction hypothesis we get $(I, I \cup \text{Lock}(W)) : G \cup \{B^t\} \Rightarrow^* W$. Since W is derived from $G \cup \{B^t\}$ it does not contain a pending call of t. It follows that
Lock($W t_r$) = Lock(W). We conclude that $(I, I \cup \text{Lock}(W t_r)) : G \cup \{r^i\} \Rightarrow (I, I \cup \text{Lock}(W t_r)) : G \cup \{r^i\}$ $t_r \Rightarrow^* W t_r$

We treat composition as the final case

Composition $G_1 \circ G_2 \Rightarrow G_1 G_2 \Rightarrow^* W$ with W is synchronised with respect to I. It follows that $G_i \Rightarrow^* W_i$ ($i = 1, 2$), with $W = W_1 W_2$, W_1 is synchronised with respect to I and W_2 is synchronised with respect to $I \cup \text{Lock}(W_1)$. By the induction hypothesis we get derivations $(I, I \cup \text{Lock}(W_1)) : G_1 \Rightarrow^* W_1$ and $(I \cup \text{Lock}(W_1), I \cup \text{Lock}(W_1) \cup \text{Lock}(W_2)) : G_2 \Rightarrow^* W_2$ We have that $I \cup \text{Lock}(W_1) \cup \text{Lock}(W_2) = I \cup \text{Lock}(W)$ as argued in the proof of theorem 1. So we conclude that $(I, I \cup \text{Lock}(W)) : G_1 \circ G_2 \Rightarrow^* W$