The handle http://hdl.handle.net/1887/20067 holds various files of this Leiden University dissertation.

Author: Lauber, Chris
Title: On the evolution of genetic diversity in RNA virus species: uncovering barriers to genetic divergence and gene length in picorna- and nidoviruses
Date: 2012-10-30
Propositions

1) Virus classification, if built on a genetic foundation, can provide important biological implications beyond a sole taxonomic purpose.

 this thesis versus King et al. (2012) Academic Press

2) The observed separation of many RNA virus species on a genetic level demands an explanation. Considering these species as being biological entities may open up such an explanation.

 this thesis versus van Regenmortel (2007)
 Dobzhansky (1937) Col.Univ.Press

3) The upper limit of genome size in RNA viruses may be no sole consequence of the high error rate of viral polymerases.

 this thesis versus Steinhauer et al. (1992) Gene

4) A single new virus genome can provide as much critical information as hundreds of known ones do together. Hence, research in virology will benefit from the continuation and broadening of virus discovery efforts.

 this thesis

5) Comparative genomics strongly suggests that the replicative uridylate-specific endoribonuclease is not a genetic marker of nidoviruses.

 this thesis versus Snijder et al. (2003) JMB
 Ivanov et al. (2004) PNAS

6) Viruses present an exquisite model for studying the principals of evolution and genetic innovation in nature.

7) RNA viruses exist as quasispecies, cooperative populations that are targeted as a whole by natural selection, aren’t they?

 Eigen (1993) Scientific American
 Domingo et al. (1985) Gene
 Vignuzzi et al. (2006) Nature
 versus
 Jenkins et al. (2001) MBE
 Holmes (2010) JMB

8) The intrinsic difficulty of communicating a proper discrimination of facts and interpretations in bioinformatics studies results in the frequent underestimation of implications brought by bioinformatics findings as well as the effort to obtain them. Closing this cultural gap between computational and experimental research will only bring mutual benefits.

 Gorbatenya et al. (1989) FEBS Letters
 Snijder et al. (2003) JMB
 versus
 Allaire et al. (1994) Nature
 Minskaia et al. (2006) PNAS

9) As large-scale data-driven approaches are becoming common practice in biology the visual communication of results emerges as being equally important as obtaining the results.

 Eisen et al. (1998) PNAS

10) "What I cannot create, I do not understand."

 Richard Feynman

11) The number of stars in the universe is finite; otherwise there would be no darkness at night.