The handle http://hdl.handle.net/1887/19776 holds various files of this Leiden University dissertation.

Author: Runtuwene, Vincent Jimmy
Title: Functional characterization of protein-tyrosine phosphatases in zebrafish development using image analysis
Date: 2012-09-12
Functional Characterization of Protein-Tyrosine Phosphatases in Zebrafish Development using Image Analysis

Vincent Jimmy Runtuwene
ISBN: 978-94-6190-134-7

Cover: Vincent Runtuwene, ‘Infinite stitched repeat of confocal image of zebrafish presomitic mesoderm tagged with mCherry-H2B and YFP-CAAX’

Printing: AB Copie, Sint-Genesius-Rode

Copyright © 2012 by Vincent Runtuwene. All rights reserved. No part of this book may be reproduced, stored in a retrieval system or transmitted in any form or by any means, without prior permission of the author.
To Elise Johanna, Ade and my parents
Functional Characterization of Protein-Tyrosine Phosphatases in Zebrafish Development using Image Analysis

Functionele Karakterisering van Proteïne-Tyrosine Fosfatasen in Zebrafis Ontwikkeling gebruik makend van Beeldanalyse (met samenvatting in het Nederlands)

PROEFSCHRIFT
ter verkrijging van
de graad van Doctor aan de Universiteit Leiden,
op gezag van Rector Magnificus Prof. mr. dr. Paul F. van der Heijden
volgens besluit van het College voor Promoties
te verdedigen op woensdag 12 september 2012
klokke 16u15

door
Vincent Jimmy Runtuwene
Geboren te Leuven (België)
in 1982
Promotiecommissie

Promotor:
Prof. Dr. Jeroen den Hertog

Overige leden:
Prof. Dr. Herman P. Spaink (lid manuscriptcommissie, secretaris) verbonden aan FWN, Leiden
Prof. Dr. Michael K. Richardson (lid manuscriptcommissie) verbonden aan FWN, Leiden
Prof. Dr. Johan Memelink (lid manuscriptcommissie) verbonden aan FWN, Leiden
Dr. Wiljan Hendriks (lid manuscriptcommissie) verbonden aan Radboud Universiteit, Nijmegen
Dr. Ewa Snaar-Jagalska verbonden aan FWN, Leiden
Dr. Erik Danen verbonden aan FWN, Leiden

The research described in this thesis was performed at the Hubrecht Institute for developmental biology and Stem Cell Research, part of the Royal Dutch Academy of the Arts and Sciences (KNAW), within the framework of the Graduate School of Cancer, Genomics and Developmental Biology (CGDB) in Utrecht, the Netherlands and Leiden University Graduate School of Science in Leiden, the Netherlands. This work was in part supported by a Marie Curie Research Training Network Grant (PTPNET/MRTN-CT-2006-035830).
Table of contents

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>RPTPα and PTPε Signaling via Fyn/Yes and RhoA is essential for Zebrafish Convergence and Extension Cell Movements during Gastrulation</td>
<td>31</td>
</tr>
<tr>
<td>3</td>
<td>Pair-Wise Regulation of Convergence and Extension Cell Movements by Four Phosphatases via RhoA</td>
<td>65</td>
</tr>
<tr>
<td>4</td>
<td>Noonan Syndrome Gain-of-Function Mutations in NRAS cause Zebrafish Gastrulation Defects</td>
<td>99</td>
</tr>
<tr>
<td>5</td>
<td>Cell Outliner and Cell Roses: New tools for Automated Cell Membrane Detection and Determination of Cell Polarity</td>
<td>119</td>
</tr>
<tr>
<td>6</td>
<td>The Protein-Tyrosine Phosphatase Family in Gastrulation Cell Movements in Zebrafish</td>
<td>139</td>
</tr>
<tr>
<td>7</td>
<td>Summarizing Discussion</td>
<td>161</td>
</tr>
</tbody>
</table>

Addendum

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Samenvatting in het Nederlands</td>
<td>171</td>
</tr>
<tr>
<td>Summary</td>
<td>173</td>
</tr>
<tr>
<td>List of Publications</td>
<td>175</td>
</tr>
<tr>
<td>Curriculum vitae</td>
<td>176</td>
</tr>
</tbody>
</table>