List of Abbreviations

AAD acquisition angle difference
ABOVA anatomy-defined bifurcation optimal viewing angle
BMS bare-metal stents
DBA distal bifurcation angle
DICOM digital imaging and communications in medicine
DMV distal main vessel
ED end-diastolic
DES drug-eluting stents
EVA expert viewing angle
IVUS intravascular ultrasound
LAD left anterior descending
LAO left anterior oblique
LCx left circumflex artery
LD long diameter
LM left main
MLD minimum lumen diameter
OBOVA obtainable bifurcation optimal viewing angle
OAV observer agreement value
OCT optical coherence tomography
OM obtuse marginal
PBA proximal bifurcation angle
PCI percutaneous coronary interventions
PDA posterior descending artery
PLA posterolateral artery
PMV proximal main vessel
PTCA percutaneous transluminal coronary angioplasty
PVA perspective viewing angle
QCA quantitative coronary angiography
RAO right anterior oblique
RCA right coronary artery
RI ramus intermedius
SB sidebranch
SD short diameter
SGLI stick-guided lateral inhibition
SSV sample scoring value
SVA software viewing angle
UM unsharp masking
XA X-ray angiography
Publications

Journal papers

14. 刑栋, 杨丰, 黄靖, 涂圣贤, Dijkstra J. 结合硬斑块特征的心血管内超声图像中-外膜边缘检测. 中国生物医学工程学报. Accepted.
Abstracts

Acknowledgments

This thesis describes the work which was performed between 2008 and 2011 under the supervision of Prof. dr. ir. J.H.C. Reiber and ir. G. Koning at the Division of Imaging Processing (LKEB), Department of Radiology, Leiden University Medical Center, and at the Department of Applied Research, Medis medical imaging systems bv, the Netherlands. Through the course of my PhD quest, many people have contributed to this thesis and I would like to express my gratitude to them.

I would like to thank the XA research group in Medis. The clinical knowledge of Gerhard and Joan, and the programming skills of Jasper and Andrei have inspired me tremendously over the past years. I owe you many, many thanks for all your help!

I am also very grateful to all my other colleagues in LKEB and in Medis. Pieter, your prompt help in the MeVisLab programming is very much appreciated. Berend, the discussions on Statistics are very helpful. Jouke, thanks for the discussions on intravascular ultrasound imaging. Boudewijn and Rob, thank you for your help in the ASCI school registration and the layout of this thesis. Kees, Clemens, Marleen, Marcel, and Sonia, I will always remember the coffee/tea time and your help in Dutch. Angela, Ellemiek, David and Lars, many thanks for the remote IT supports while I was carrying out validations in the hospitals. The M&S and R&D teams, I appreciate your consistent supports as well.

Through all the validation studies, I got tremendous supports from many physicians, technicians, and engineers around the world. Niels Holm, thank you so much for your prompt feedbacks and for all your helps. I cannot even count how many e-mails and talks we had for the past year. Bo Xu, Evelyn Regar, Jurgen Ligthart, Tom Adriaenssens, Williams Wijns, Yundai Chen, Zheng Huang, and Xianglong Wei, thank you for all the arrangements and efforts to make the validations possible. I benefited a lot from our clinical discussions as well. Kevin Onsea, Liang Xu, Jing Jing, Peiyuan Hao, Tao Zhang, Kai Cui, Karen Witbert, Paul De Graaf, Fabio Mangiacapra, Stelios Pyxaras, Olivier Nelis, Zhongwei Sun, Jozef Adams, and Andy Wiyono, I enjoy a lot working with you. Albert Bruschke, Xudong Song, Yasuhiro Ishii, Hiram Bezerra, Xiao De, Wouter Jukema, Christophe Dubois, Walter Desmet, Michael Maeng, Leif Thuesen, Yazhu Chen, Su Zhang, Feng Yang, Tobias Boskamp, Patrick Brouwer, and Alexandra Lansky, many thanks for all your interests and your contributions.
I am very grateful to be surrounded by my family with full love and harmony. 爸爸，妈妈，感谢你们多年来一直在支持我，鼓励我。你们无私的爱与默默的关怀，一直是我最强大的精神动力。姐姐，我最想说的是：有你这个姐姐真好！

Yinghui, thank you for sharing all the excitements, joys and sorrows with me during my PhD study. Particularly, thank you so much for giving me such a precious daughter. Minghua, it is such a great pleasure to witness your growth every day! Your laugh always lights up my day.
Curriculum vitae

Shengxian (Sanven) Tu was born in Raoping, Guangdong, China on September 17, 1981. In 2000 he received his secondary school degree from Fengzhou Middle School in Raoping and started his bachelor study on Biomedical Engineering, at Southern Medical University (formerly known as First Military Medical University), Guangzhou, China. He received the bachelor degree in July 2005. In the same year, he was admitted by the Department of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China, as a master student, under the supervision of Prof. ir. Yazhu Chen and dr. ir. Su Zhang. He graduated in February 2008 with a thesis entitled "Image-guided targeting in treatment planning for focused ultrasound therapy" and was awarded the title “Shanghai Outstanding Graduate Student”. Right after his graduation, he joined the XA research group at the Department of Applied Research, Medis medical imaging systems as a scientific researcher, while at the same time pursuing a PhD degree at the Division of Image Processing (LKEB), Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands, under the supervision of Prof. dr. ir. J.H.C. Reiber and ir. G. Koning. He has been working on the project of coronary vascular reconstruction from X-ray angiographic images and the fusion with intravascular ultrasound (IVUS) and optical coherence tomography (OCT), plus the use of 3D OCT for support of coronary interventions. The works are presented in this thesis and the algorithms were integrated into prototype software packages that were installed and validated in a number of hospitals around the world. At the early of 2011, he was awarded the “Outstanding Oversea Chinese Student” for his PhD study by the Ministry of Education of the People’s Republic of China.

Currently he continues his research and development on multi-modality imaging at Medis medical imaging systems. His research interests include image reconstruction, quantitative analysis, image fusion and image-guided therapy.