INCREMENTAL VALUE OF ADVANCED CARDIAC IMAGING MODALITIES FOR DIAGNOSIS AND PATIENT MANAGEMENT

Focus on real-time three-dimensional echocardiography and magnetic resonance imaging

Nina Ajmone Marsan
The research described in this thesis was performed at the Department of Cardiology of the Leiden University Medical Center, Leiden, The Netherlands

Cover: Nina Ajmone Marsan

Lay-out and printing: Optima Grafische Communicatie, Rotterdam, The Netherlands

ISBN: 978-94-6169-133-0

Copyright© Nina Ajmone Marsan, Leiden, the Netherlands. All rights reserved. No part of this book may be reproduced or transmitted, in any form or by any means, without permission of the author.

Financial support to the costs associated with the publication of this thesis from Philips Healthcare is gratefully acknowledged. Additional gratitude goes to Meda Pharma, Boehringer Ingelheim, Biotronik and Boston Scientific Nederland BV.
Incremental value of advanced cardiac imaging modalities for diagnosis and patient management

Focus on real-time three-dimensional echocardiography and magnetic resonance imaging

Proefschrift

ter verkrijging van
de graad van Doctor aan de Universiteit Leiden,
op gezag van Rector Magnificus prof. mr. P.F. van der Heijden,
volgens besluit van het College voor Promoties
te verdedigen op donderdag 3 november 2011
klokke 16:15 uur

door

Nina Ajmone Marsan

geboren te Rome, Italië in 1976
PROMOTIECOMMISSIE

Promotores: Prof. dr. J.J. Bax
 Prof. dr. M.J. Schalij

Overige leden: Dr. V. Delgado
 Dr. E.R. Holman
 Prof. dr. P. Nihoyannopoulos (Imperial London Hammersmith Hospital)
 Prof. dr. A. de Roos
 Dr. H.F. Verwey
 Prof. dr. E.E. van der Wall
To my parents and to Rutger
TABLE OF CONTENTS

General introduction and outline of the thesis 13

PART I

REAL-TIME THREE-DIMENSIONAL ECHOCARDIOGRAPHY

Chapter 1
Real-time three dimensional echocardiography: current and future clinical applications.
Heart 2009

Chapter 2
Real-time three-dimensional echocardiography as a novel approach to assess left ventricular size, function and dyssynchrony.

Part IA

Chapter 2
Predicting response to CRT. The value of two- and three-dimensional echocardiography.
Europace 2008

Chapter 3
Real-time three-dimensional echocardiography permits quantification of left ventricular mechanical dyssynchrony and predicts acute response to cardiac resynchronization therapy.
J Cardiovasc Electrophysiol 2008

Chapter 4
Real-time three-dimensional echocardiography as a novel approach to quantify left ventricular dyssynchrony: a comparison study with phase analysis of gated myocardial perfusion SPECT.
J Am Soc Echocardiogr 2008

Chapter 5
Usefulness of multimodality imaging for detecting differences in temporal occurrence of left ventricular systolic mechanical events in healthy young adults.
Am J Cardiol 2009

Chapter 6
Tri-plane tissue Doppler imaging: a novel 3-dimensional imaging modality that predicts reverse left ventricular remodeling after cardiac resynchronization therapy.
Heart 2008

Chapter 7
Left ventricular dyssynchrony assessed by two 3-dimensional imaging modalities: phase analysis of gated myocardial perfusion SPECT and tri-plane tissue Doppler imaging.
Eur J Nucl Med Mol Imaging 2008
Chapter 8
Noninvasive imaging of cardiac venous anatomy with 64-slice multi-slice computed tomography and noninvasive assessment of left ventricular dyssynchrony by 3-dimensional tissue synchronization imaging in patients with heart failure scheduled for cardiac resynchronization therapy.
Am J Cardiol 2008

Part IB
Real-time three-dimensional echocardiography for the assessment of left atrium volumes and function.

Chapter 9
Real-time three-dimensional echocardiography as a novel approach to assess left ventricular and left atrium reverse remodeling and to predict response to cardiac resynchronization therapy.
Heart Rhythm 2008

Chapter 10
Comparison of left atrial volumes and function by real-time three-dimensional echocardiography in patients having catheter ablation for atrial fibrillation with persistence of sinus rhythm versus recurrent atrial fibrillation three months later.
Am J Cardiol 2008

PART II
CONTRAST-ENHANCED ECHOCARDIOGRAPHY

Chapter 11
Safety of contrast-enhanced echocardiography within 24 h after acute myocardial infarction.
Eur J Echocardiogr 2008

Chapter 12
Real-time 3-dimensional echocardiography early after acute myocardial infarction: incremental value of echo-contrast for assessment of left ventricular function.
Am Heart J 2009

Chapter 13
Impact of left ventricular dyssynchrony early on left ventricular function after first acute myocardial infarction.
Am J Cardiol 2010

Chapter 14
Reduced left ventricular torsion early after myocardial infarction is related to left ventricular remodeling.
Circ Cardiovasc Imaging 2010
PART III MAGNETIC RESONANCE IMAGING

Part IIIA Magnetic resonance imaging for the assessment of left ventricular dyssynchrony and myocardial viability.

Chapter 15 Comparison between tissue Doppler imaging and velocity-encoded magnetic resonance imaging for measurement of myocardial velocities, assessment of left ventricular dyssynchrony, and estimation of left ventricular filling pressures in patients with ischemic cardiomyopathy.

Am J Cardiol 2008

Chapter 16 Magnetic resonance imaging and response to cardiac resynchronization therapy: relative merits of left ventricular dyssynchrony and scar tissue.

Eur Heart J 2009

Chapter 17 Agreement and disagreement between contrast-enhanced magnetic resonance imaging and nuclear imaging for assessment of myocardial viability.

Eur J Nucl Med Mol Imaging 2009

Chapter 18 Three-dimensional echocardiography for the preoperative assessment of patients with left ventricular aneurysm.

Ann Thoracic Surg 2011

Part IIIb Magnetic resonance imaging for the assessment of valvular heart disease.

Chapter 19 Mitral valve and tricuspid valve blood flow: accurate quantification with 3D velocity-encoded MR imaging with retrospective valve tracking.

Radiology 2008

Chapter 20 Quantification of functional mitral regurgitation by real-time 3D echocardiography: comparison with 3D velocity-encoded cardiac magnetic resonance.

JACC Cardiovasc Imaging 2009
PART IV

INCREMENTAL VALUE OF ADVANCED IMAGING MODALITIES IN CARDIAC RESYNCHRONIZATION THERAPY

Chapter 21

Left ventricular rotational mechanics in acute myocardial infarction and in chronic (ischemic and nonischemic) heart failure patients.

Am J Cardiol 2009

Chapter 22

Effects of cardiac resynchronization therapy on left ventricular twist.

J Am Coll Cardiol 2009

Chapter 23

Cardiac resynchronization therapy as a therapeutic option in patients with moderate-severe functional mitral regurgitation and high operative risk.

Circulation 2011

Chapter 24

Effect of cardiac resynchronization therapy on cerebral blood flow.

Am J Cardiol 2010

Chapter 25

Cardiac resynchronization therapy in patients with ischemic versus non-ischemic heart failure: Differential effect of optimizing interventricular pacing interval.

Am Heart J 2009

Chapter 26

Comparison of time course of response to cardiac resynchronization therapy in patients with ischemic versus nonischemic cardiomyopathy.

Am J Cardiol 2009

Summary and Conclusions

467

Samenvatting en Conclusies

477

List of publications

487

Acknowledgements

497

Curriculum Vitae

501