Advanced echocardiography and cardiac magnetic resonance in congenital heart disease

Insights in right ventricular mechanics and clinical implications

Annelies van der Hulst
Advanced echocardiography and cardiac magnetic resonance in congenital heart disease

Insights in right ventricular mechanics and clinical implications

Proefschrift

Ter verkrijging van
De graad van Doctor aan de Universiteit Leiden,
Op gezag van Rector Magnificus prof. mr. P.F. van der Heijden,
Volgens besluit van het College voor Promoties
Te verdedigen op donderdag 20 oktober 2011
klokke 15.00 uur

door

Anna Elisabeth van der Hulst
Geboren te Meppel in 1980

The project was supported by a grant from the Willem Alexander Kinderfonds, Leiden, the Netherlands.

The printing of this thesis was financially supported by the J.E. Jurriaanse Stichting, by the Division of Image Processing (LKEB) of the Leiden University Medical Center and by stichting Imago.

Financial support by the Dutch Heart Foundation for the publication of this thesis is gratefully acknowledged.

Cover and lay out by Anna Gerdien Bruna, Bruna & Bruna
Printed by GVO drukkers & vormgevers B.V

CONTENTS

1. General introduction

2. Echocardiographic imaging of right ventricular mechanics
 2.1 Cardiac resynchronization therapy in congenital heart disease and pediatric patients
 2.2 Tissue Doppler imaging in the left ventricle and right ventricle in healthy children: normal age-related peak systolic velocities, timings, and time differences
 2.3 Relationship between temporal sequence of right ventricular deformation pattern and right ventricular performance in patients with corrected tetralogy of Fallot
 2.4 Relation of left ventricular twist and global strain with right ventricular dysfunction in patients after correction of tetralogy of Fallot
 2.5 Real-time three-dimensional echocardiography: segmental analysis of the right ventricle in patients with tetralogy of Fallot

3. Cardiac magnetic resonance imaging of right ventricular mechanics
 3.1 Review: cardiac magnetic resonance imaging in postoperative congenital heart disease patients
 3.2 Direct comparison between tissue Doppler imaging and velocity-encoded magnetic resonance imaging for assessment of right ventricular performance and temporal activation in corrected Tetralogy of Fallot patients
 3.3 Validation and application of tissue-velocity magnetic resonance imaging and tissue Doppler imaging for the assessment of regional myocardial diastolic velocities at the right ventricle in corrected tetralogy of Fallot patients
 3.4 Tetralogy of Fallot: 3D Velocity-encoded MR Imaging for Evaluation of Right Ventricular Valve Flow and Diastolic Function in Patients after Correction

4. Prediction of outcome of congenital heart disease patients with echocardiography
 4.1 Mild residual pulmonary stenosis after correction of tetralogy of Fallot reduces the risk of pulmonary valve replacement during follow-up
 4.2 Prediction of atrial arrhythmia in adult patients with congenital heart disease with tissue Doppler imaging

5.1 Summary and conclusions

5.2 Nederlandse samenvatting

List of publications