Chapter 2

Extensive chimerism in liver transplants: Vascular endothelium, bile duct epithelium, and hepatocytes

W. Rogier ten Hove
Bart van Hoek
Ingeborg M. Bajema
Jan Ringers
Johan H.J.M. van Krieken
Emma L. Lagaaij

Liver Transplantation 2003;9:552-556.
Abstract

Background
The transplanted liver has been shown to be particularly capable of inducing tolerance. An explanation may be the presence of chimerism. Cells of donor origin have been found in recipient tissues after transplantation of any solid organ. Evidence for the presence of cells of recipient origin within the transplanted liver is very limited. We investigated whether nonlymphoid cells of recipient origin can be found within human liver allografts.

Methods
Five male patients who received a liver transplant from a female donor and 11 patients who received an HLA-I mismatched liver transplant were studied. We confirmed our observations with two different techniques in combination with double-staining techniques. To identify male cells in female liver transplants, we used in situ hybridization for sex chromosomes. To identify specific HLA class I antigens of recipient origin, we used immunohistochemistry with HLA class I–specific antibodies. Double staining was performed to discriminate different cell lineages and inflammatory cells.

Results
Endothelial cells of recipient origin were found in 14 of 16 donor livers. Bile duct epithelial cells of recipient origin were found in 5 of 16 cases. Hepatocytes of recipient origin were seen in only 1 of the 5 studied sex-mismatched donor livers.

Conclusion
Our study provides evidence that cells of recipient origin can replace biliary epithelial cells, endothelial cells, and hepatocytes within the human liver allograft. This is consistent with the concept that circulating pluripotent progenitor cells exist, capable of differentiating into endothelial cells, epithelial cells, and hepatocytes.
Introduction

In the early days of solid-organ transplantation, it was postulated that the success of renal transplantation could be explained by the existence of chimerism within the graft. Especially chimerism of endothelial cells was thought to be relevant because endothelium is one of the major targets for graft rejection. Replacement of donor endothelial cells by recipient cells therefore would reduce the immunogenicity of the graft.1 During the past four decades, several studies addressed the issue of intragraft chimerism in solid-organ transplants, with conflicting results.2-7 Most studies did not find chimerism or found it only sporadically in poorly functioning grafts. Therefore, it became generally believed that non-lymphoid cells in organ grafts remain of donor origin. However, we found clear evidence of endothelial cell chimerism in renal allografts, and cardiac chimerism has also been described recently.8,9

The liver, in comparison to other transplanted organs, has been shown to be particularly capable of inducing tolerance.10-13 A number of hypotheses have been put forward to explain this immune-privileged state. One of these is the presence of chimerism.14-16 Other factors mentioned are regenerative capacity and the production of soluble major histocompatibility complex. Many studies addressed the issue of chimerism outside the graft resulting from donor-derived highly immunogenic passenger leukocytes, of which the liver is particularly rich. Donor-derived cells can be found in recipient peripheral tissues years and even decades after transplantation.14,17 The clinical relevance of the persistence of donor leukocyte chimerism is still unclear.18

Little is known about chimerism within the human liver allograft. Only few have studied this human hepatic intragraft chimerism.19,20 For decades, it has been the general belief that only Kupffer cells of recipient origin can be found within the transplant, whereas endothelial cells, bile duct epithelial cells, and hepatocytes remain of donor origin.19 In animal studies, evidence is growing that bonemarrow-derived stem cells can differentiate into various hepatic cell types, such as hepatocytes and endothelial cells.21-24 We therefore investigated whether nonlymphoid cells of recipient origin can be found within human liver allografts.
Patients and Methods

Patients and Biopsy Specimens
Five male patients who received a liver transplant from a female donor were selected. None of the female donors had had male offspring. In addition, 11 patients with HLA-I mismatching allografts for A2, A3, A9, or A11 were studied. All patients had undergone orthotopic liver transplantation at Leiden University Medical Center (Leiden, The Netherlands) between 1993 and 1998. Liver biopsy samples were obtained 1 year after transplantation, according to protocol. Additional biopsy specimens obtained early after transplantation were studied of one selected patient with evidence of extensive chimerism in the 1-year biopsy specimen. As per protocol, a part of every biopsy specimen had been stored at 80°C, whereas the other part was formalin fixed and stored in paraffin.

Approval by the Ethics Committee of Leiden University Medical Center was obtained.

HLA Typing
HLA typing for antigens of class I was performed using standard serological methods by complement-dependent microcytotoxicity on peripheral-blood leukocytes of recipients and splenocytes of donors, which are available as part of the routine pretransplantation workup.

In Situ Hybridization Sex Chromosomes
For sex-chromosome identification in the five sex-mismatched grafts, we performed in situ hybridization using repetitive DNA probes specific for X and Y chromosomes, as previously described. Briefly, probes were biotinylated by nick translation and dissolved in a 60% formamide hybridization mixture. Paraffin sections 6-mm thick were cut and mounted on poly-L-lysine–coated slides. Predigestion steps consisted of incubation in 1 mol/L of sodium thiocyanate solution at 80°C, followed by 60 to 90 minutes of treatment with 0.5% pepsin in 0.1 mol/L of hydrochloric acid. Hybridization was performed overnight at 42°C. The hybridization reaction was visualized with avidin, biotinylated goat antiavidin, and avidin-peroxidase developed with diaminobenzidine. Positive and negative controls for in situ hybridization were biopsy specimens from normal male and female livers.

Immunohistochemical Analysis
For HLA class I antigens, immunohistochemical staining was performed
on cryostat sections from the 11 HLA-I-mismatched grafts, as previously described.26 In short, sections were fixed in cold acetone and incubated with the primary antibody. Four monoclonal antibodies were used that recognize the HLA class I antigens A2, A3, A9, and A11 (American Type Culture Collection, Rockville, MD). A two-step immunoperoxidase technique was used with 3-amino-g-ethyl-carbazol as a coloring substrate. Each patient was tested with all antibodies, which provided many positive and negative controls. For additional negative controls, the second antibodies were replaced by phosphate-buffered saline. Recipient-derived graft-infiltrating cells stained positive for recipient major histocompatibility complex antigens and thus served as internal positive controls.

Additional Staining Techniques
For double staining, antibodies against endothelial cell–specific antigens (CD31, factor VIII; Dako, Carpinteria, CA) against lymphocytes, monocytes, and other inflammatory cells (CD45-LCA; Dako) and bile duct epithelial cells (keratin 18; LUMC, Leiden, The Netherlands) were combined with immunohistochemistry with HLA class I–specific antibodies and in situ hybridization with sex chromosomes. When possible, double staining was realized on the same slide. In other cases, different staining techniques were performed on consecutive slides.

Results

In Situ Hybridization for X and Y Chromosomes
Endothelial cells of recipient origin, i.e., Y chromosome positive, were found in all five sex-mismatched patients. A detail of a biopsy sample of a female liver transplanted into a male recipient can be seen in Figure 1A. This detail of a vessel wall shows an endothelial cell staining positive with the Y chromosome probe, indicating male (recipient) origin. Hepatocytes of recipient (male) origin were seen in only one of five studied patients, shown in Figure 1B. Most hepatocytes stain negative, indicating the donor origin of these cells, but some contain a Y chromosome. Hepatocytes can be tetraploid, which explains why two spots sometimes can be seen within one cell. Partial nuclear sampling in tissue sections may lead to undercounting of Y-positive nuclei. Recipient-derived bile duct epithelial cells were seen in three of five patients. Figure 1C shows a biopsy sample of a female liver graft transplanted into a male recipient 1-year posttransplantation, showing a bile duct. Epithelial cells containing a Y chromosome can be seen,
indicating the presence of male epithelial bile duct cells of recipient origin. Double staining with periodic acid–Schiff (PAS) makes the bile duct stand out because bile duct epithelial cells are PAS negative. Figure 1D shows the same bile duct in a consecutive slide with CD45 staining to confirm that the duct is free of inflammatory cells.

Figure 1.
In situ hybridization for Y chromosomes. A female donor liver was transplanted into a male recipient. In situ hybridization with a Y-specific centromeric DNA probe was performed on a posttransplantation biopsy sample. In (A) endothelial cells of middle large vessels, (B) hepatocytes, and (C, D) bile duct epithelial cells, clear signals can be appreciated after in situ hybridization with this probe, indicating that chimerism has taken place in all three cell types. (C) A PAS background that makes the bile duct stand out because cholangiocytes are PAS negative. (D) Staining on a consecutive slide with CD45 and no inflammatory cells can be seen in or near the bile duct. The female donor of this graft had no male offspring. The presence of endogenous biotin in hepatocytes causes some background staining. (Original magnification X400.)

Immunohistochemistry for HLA Class I Antigens
A biopsy sample of an HLA-A2–negative liver graft transplanted into an HLA-A2–positive recipient is shown in Figure 2. A bile duct with biliary epithelial cells staining positive for recipient type HLA-A2 is shown in Figure 2A. This chimerism of bile duct epithelial cells was observed in 2 of these 11 HLA-mismatched patients and could be seen in smaller, as well as larger, bile ducts. Replacement of donor type vascular endothelium by recipient type could be observed to a variable degree in 9 of the 11 studied patients. Sinusoidal endothelium staining positive for recipient-
type HLA-A2 is shown in detail in Figure 2B, with double staining with CD31, which stains endothelial cells irrespective of their origin. Hepatocytes were difficult to differentiate with certainty from inflammatory cells with this technique and therefore were not scored in this series.

To investigate whether chimerism can develop earlier than 1 year after transplantation, we studied serial liver biopsy specimens by HLA staining from a patient in whose graft we found extensive endothelial cell chimerism 1 year after transplantation. We found no evidence for chimerism in the biopsy sample obtained 1 week after transplantation, whereas it became apparent in the specimens obtained 3 months after transplantation.

One male HLA-A3–negative patient received an HLA-A3–positive graft from a female donor. In this patient, we used both in situ hybridization for Y chromosomes and immunohistochemistry for HLA-A3. We observed endothelial cell chimerism, but no bile duct epithelial cell chimerism, with both techniques in this patient.

Discussion

Our study provides evidence that cells of recipient origin can replace biliary epithelial cells, endothelial cells, and hepatocytes within the human liver allograft. We confirmed our observations using two different techniques. Additional staining techniques were performed to distinguish different cell lineages from inflammatory cells of recipient
Replacement of biliary duct epithelium was observed in one third of patients (5 of 16 patients with the two techniques combined). Endothelial cell chimerism was found to be very common (14 of 16 patients). Hepatocytes of recipient origin were found in only one of five donor livers studied with in situ hybridization for X and Y chromosomes (the HLA stain is not suitable for looking at hepatocyte chimerism). Chimerism within the human liver transplant to such extent that it involves endothelium, bile duct epithelium, and hepatocytes has not been reported previously. For decades, the general belief has been that lymphocytes and Kupffer cells of recipient origin are found in the liver, but graft bile duct epithelium, hepatocytes, and endothelium were considered to remain of donor origin.19,27,28

Gouw et al19 reported in 1987, with the techniques available at that time, that endothelium, bile duct epithelium, and hepatocytes remained of donor origin. However, recent reports indicate that replacement of donor cells by recipient-derived cells occurs much more frequently than was generally assumed. For instance, Gao et al20 found male endothelial cells in female liver graft recipients. Similarly, Theise et al29 reported male hepatocytes and cholangiocytes in female liver grafts recipients; however, Fogt et al7 recently did not find convincing evidence of stem-cell engraftment into transplanted liver tissue.

Baccarani et al30 argued that the presence of male cells in female donor livers can result from previous male pregnancies of the donor because this is a very common phenomenon in women with male offspring. To date, all published studies mentioned did not provide information concerning pregnancies of the donor. In the present study, we observed Y chromosome–positive cells in grafts from female donors without male offspring (G. Persijn, Eurotransplant Foundation, Leiden, The Netherlands, personal communication, January 2003). In a graft from which serial biopsy specimens were obtained, we did not find endothelial chimerism 1 week after transplantation, whereas it was evident after 3 months. Furthermore, HLA antigens of the recipient are extremely unlikely to be identical to HLA antigens of the offspring of the donor. Our data therefore provide evidence that the observed endothelial cells, bile duct cells, and hepatocytes are of recipient origin and not derived from previous male pregnancies of the female donor.

In the present study, endothelial cell chimerism was much more common than chimerism involving bile duct epithelium. This observation is
consistent with the previously postulated concept that chimerism results from repair of damage, although other causes cannot be excluded.31

The liver is very susceptible to vascular damage and, to a lesser extent, bile duct damage caused by ischemia-reperfusion injury and acute cellular rejection.32,33 This may explain the greater percentage of endothelial chimerism than bile duct epithelial chimerism in the present study. Possibly, apoptotic or necrotic hepatocytes may be replaced mainly by regeneration from a local pool of donor hepatocytes.

Serious damage to biliary ducts can be observed during chronic ductopenic rejection. This complication, which often leads to graft loss, has become a rare condition and was not present in our patients. Although unusual, repair of bile ducts has even been reported in this condition.34,35 Our findings support the possibility of bile duct repair originating from circulating recipient precursor cells, although this does not exclude that it can occur next to repopulation from a local pool of donor oval cells.

In conclusion, our study provides evidence that recipient-derived cells can replace biliary epithelium, endothelium, and hepatocytes in liver transplants. This is consistent with the concept that circulating progenitor cells exist, capable of differentiating into endothelial and epithelial cells.21,22

Contributors

Rogier ten Hove, Malice Lagaaij, Han van Krieken, and Bart van Hoek planned and organized the study, analyzed the data, and wrote the manuscript.

Han van Krieken and Ingeborg Bajema helped design the study and supervised staining techniques. Bart van Hoek initiated collaboration and collected clinical data. Jan Ringers collected data.
References

