Chapter 2

Control of blackleg and tuber soft rot of potato caused by *Pectobacterium* and *Dickeya* species: a review

Robert Czajkowski, Michel C. M. Perombelon, Johannes A. van Veen, Jan M. van der Wolf

ABSTRACT

Potato blackleg and soft rot caused by pectinolytic *Pectobacterium* and *Dickeya* species are among the most severe bacterial diseases of potato which affect seed and ware potato production globally. The pathogens are mainly seed-borne and are readily spread via latently infected tubers. Despite the introduction of pathogen-free minitubers, the problems with blackleg and soft rot pathogens remain unresolved and even appear to be increasing. This paper briefly summarizes the causative agents of blackleg and soft rot diseases and the disease syndrome including epidemiological and etiological aspects. It critically evaluates control methods used in practice based on the avoidance of the contamination of plants, in particular the use of seed testing programs and the application of hygienic procedures during crop production. It describes the perspective for resistance breeding and genetic modification to introduce resistance. It also evaluates the application of physical and chemical tuber treatments to reduce inoculum load and examines the possibility for biocontrol using antagonistic bacteria and bacteriophages.

INTRODUCTION

Potato (*Solanum tuberosum*, L.) is a worldwide cultivated tuber bearing plant which is the fourth main food crop in the world after rice (*Oryza sativa*, L.), maize (*Zea mays*, L.) and wheat (*Triticum aestivum*, L.) both in area cultivated and total production (Douches et al., 1996). Potato does not require special growth conditions; it has been for a long time a major field crop in temperate and increasingly in warmer regions (Haverkort, 1990).

Commercial cultivars are derived from a restricted number of potato clones introduced in Europe in the 16th century following the exploration of South America. It consequently has resulted in a narrow genetic base hence with a limited range of resistance to many diseases that lower yields and tuber quality (Hooker, 1981). An estimated 22% of potato crops is lost per year due to viral, bacterial, fungal diseases and pests which is equivalent to an annual loss of over 65 million tonnes (Ross, 1986, International Potato Center, Lima, Peru http://www.cipotato.org/; Food and Agriculture Organization, United Nations http://www.fao.org/).
Control of Dickeya and Pectobacterium species in potato

Bacteria belonging to the *Pectobacterium* and *Dickeya* genera are causal agents of blackleg and tuber soft of potato (Perombelon & Kelman, 1980, Perombelon, 2002). In seed potato production these diseases are next in economic importance to bacterial wilt caused by *Ralstonia solanacearum* and before ring rot and common scab caused by *Clavibacter michiganensis* subsp. *sepedonicus* or *Streptomyces scabies* respectively (Van der Wolf & De Boer, 2007). During the last forty years different aspects of blackleg and tuber soft rot and their pathogens have been reviewed. Attention has focused on taxonomy (Dye, 1969, Graham, 1964, Hauben et al., 1998, Samson et al., 2005), ecological and epidemiological characteristics (Charkowsky, 2006, Perombelon, 2002, Starr & Chatterjee, 1972, Perombelon & Kelman, 1980, Perombelon & Salmond, 1995, Toth et al., accepted to Plant Pathology), pathogenesis and regulation of extracellular enzyme synthesis (Barras et al., 1994, Hugouiex-Cotte-Pattat et al., 1996, Perombelon, 2002, De Boer, 2003, Stanghellini, 1982, Perombelon, 1982), genetics and molecular biology (Chatterjee, 1980, Robert-Baudouy, 1991), comparative genomics of pectinolytic bacteria (Toth et al., 2003, Toth et al., 2006) and biochemical basis of resistance of potato to blackleg and soft rot (Lyon, 1989). In contrast, there is no comprehensive review of disease control to date.

This publication is a critical evaluation of past and current attempts to control blackleg and tuber soft rot mainly from a European perspective. Disease control measures examined are: avoidance of contamination by the blackleg pathogen, role of fertilization, application of classical breeding and genetic modification to introduce resistance, the use of physical and chemical tuber treatments and research on biocontrol of blackleg and soft rot pathogens. The measures refer to both seed and ware crops to different extent; in the case of the former the objectives are primarily to produce healthy crops by avoiding/reducing tuber contamination, whereas with the latter, the aim is to minimize yield loses by avoiding/preventing disease in the field and in storage.

DISEASE SYNDROME

Bacteria

The main bacteria causing blackleg, which affects the growing plant, and tuber soft rot of potato are the soft rot bacteria *Pectobacterium atrosepticum* (Pa), *P. carotovorum* subsp. *carotovorum* (Pcc) and *Dickeya* species (Van der Wolf &
Chapter 2

De Boer, 2007), formerly belonging to the genus *Erwinia* (*E. carotovora* subsp. *carotovora*, *E. carotovora* subsp. *atroseptica* and *E. chrysanthemi*) (Dye, 1969). They are pectinolytic Gram-negative, facultative anaerobic, non-sporing, motile, straight rods with peritrichous flagellae (Charkowsky, 2006). They belong to the γ-Proteobacteria subdivision and are clustered in the *Enterobacteriaceae* family (Charkowsky, 2006). They characteristically produce a variety of cell wall degrading enzymes that allow infiltration and maceration of plant tissues on which they feed (Barras et al., 1994).

Whereas Pcc has a broad host range worldwide, Pa is restricted only to potato principally in temperate regions. In contrast, *Dickeya* spp. affect a restricted number of host species in both temperate, sub-tropical and tropical regions (Ma et al., 2007, Toth et al., accepted to Plant Pathology). The three species of bacteria can cause tuber soft rot but for a time only Pa was believed to cause blackleg in temperate and *Dickeya* spp. in warmer regions (Perombelon & Salmond, 1995). However, recently Pcc has been shown to infect potato plants causing typical blackleg symptoms (De Haan et al., 2008). This may reflect the warmer summers prevailing lately or that new adapted forms might have arisen. It is notable that in Colorado and Arizona in the USA with hot summers, Pcc was regarded for a long time as a true blackleg pathogen together with Pa (Molina & Harrison, 1977).

Although *Dickeya* spp. have long been associated with blackleg in tropical and subtropical regions, only strains of *Dickeya dianthicola* were isolated from blackleg-diseased plants in Western Europe in the past two/three decades. These, so-called “cold tolerant” strains showed a lower growth temperature optimum (Janse & Ruissen, 1988). However, since 2005, a new genetic clade, representing probably a highly virulent *Dickeya* species belonging to biovar 3 has been detected in Europe (Tsror et al., 2008, Slawiak et al., 2009). Strains belonging to this clade were isolated from seed potatoes in France, Finland, Poland, The Netherlands and Israel. In many of these countries the pathogen was introduced via the international trade of seed potatoes. All isolates were clonal, which suggests a common origin and possibly a single introduction event. The same genetic clade has been found in hyacinth. One might speculate that in the recent past this genetic clade was introduced from hyacinth into potato, possibly via the use of contaminated irrigation water (Slawiak et al., 2009), however the role of flower bulbs in the dissemination of the pathogen is still unknown.

Recently, two new subspecies of Pcc were described as potato blackleg causing organisms. *P. c*. subsp. *brasiliensis*, a highly aggressive bacterium, is
Control of Dickeya and Pectobacterium species in potato

responsible for the majority of blackleg incidences in Brazil (Duarte et al., 2004) and South Africa (van der Merwe et al., 2010). P.c. subsp. wasabiae has been described as a new potato pathogen in New Zealand responsible for high blackleg levels (Pitman et al., 2010). Until then, P.c. wasabiae was found only in association with soft rot on Japanese horseradish (Gardan et al., 2003, Pitman et al., 2010).

Symptoms

The most characteristic symptom of potato blackleg caused by both Pectobacterium and Dickeya species is a slimy, wet, black rot lesion spreading from the rotting mother tuber up the stems especially under wet conditions. However, when conditions are dry, symptoms tend to be stunting, yellowing, wilting and desiccation of stems and leaves (Perombelon & Kelman, 1980). Late in summer, under persistent rainy conditions, extensive stem rot, starting from the top and progressing downwards to the base, can develop and can be confused with those of blackleg. They are usually caused only by Pcc (Perombelon & Kelman, 1980).

Tuber soft rot is initiated at lenticels, stolon end and/or in wounds under wet conditions. The lesion can spread to the whole tuber and thence to neighbouring tubers in storage. Tuber tissue is macerated to a creamy consistence which turns black in the presence of air, developing an evil smell when invaded by secondary organisms. When seed tubers start rotting in the field before emergence, blanking occurs. In inadequately ventilated cool stores, rotting can spread to adjoining tubers as liquid from the rotting tubers percolate onto others, leading sometimes to massive rotting pockets in the stored tuber lot.

Epidemiology

Our knowledge on this topic is derived from studies done usually in temperate countries involving mainly Pcc and Pa and rarely Dickeya spp. which only recently have become more economically important. One has to be careful when extrapolating past results to Dickeya spp.

The soft rot bacteria do not overwinter in soil. Survival in soil is restricted to one week to six months, depending on environmental conditions, such as soil temperature, moisture and pH. Survival can be longer in association with plant material, including volunteers. In any event, the bacteria cannot survive in the soil

It is now generally accepted that the major source for blackleg infection is the latently infected seed (mother) tubers (Perombelon, 1974). When the mother tuber rots the bacteria are liberated in the soil and are transmitted by soil water to contaminate neighboring progeny tubers. Czajkowski and co-workers (2010) showed that the bacteria in soil can colonize also potato roots and subsequently move via the vascular system into progeny tubers. Once in the stems, the bacteria do not necessarily cause stem rot (blackleg) and can survive in latent form.

Crop contamination can also occur from air borne sources (Perombelon, 1992, Harrison et al., 1987, Perombelon et al., 1979, Graham, 1976). Soft rot bacteria can be carried from diseased plants by air-borne insects over long distances to contaminate other potato crops. Also, they can be present in aerosols produced by rain impaction on blackleg plants and by haulm pulverization prior to harvest. Air sampled in Scotland, even away from potato crops, contained both Pcc and Pa, more on rainy than dry days. Although they remain viable for 5-10 min only, they can be blown away for several hundred meters before deposition mainly by the scrubbing action of rain.

Surface water in the USA and Scotland was found to be contaminated with Pcc and to a lesser extent with Pa (McCarter-Zorner et al., 1984, Harrison et al., 1987). Recently, in Europe, a biovar 3 Dickeya spp. genetic clade, not previously described, has been found in river water and at the same time in seed potatoes in Finland (Laurila et al., 2008, Laurila et al., 2010). Hence, surface water when used for irrigation purposes is likely to be a source for the pathogen, and may also be a source of new variants of the pathogen.

Contamination of crops can also occur during mechanical flailing (Perombelon et al., 1979). Most importantly, contamination of tubers can occur during harvesting and handling (grading) in store from the ubiquitous rotting tubers which disintegrate and spread the rotting tissue on the machinery, thence in wounds inflicted during handling (Elphinstone & Perombelon, 1986, Perombelon & Van der Wolf, 2002). Therefore, there is a high risk that one or several soft rot bacteria contaminate the commercially produced tubers, on which bacteria can survive from one generation to the next (Perombelon, 1974, Perombelon & Kelman, 1980, Perombelon, 1992, van Vuurde & de Vries, 1994).
Aetiology

Blackleg develops after rotting of seed (mother) tubers, however, it is not a necessary sequel to mother tuber rotting. Conditions which favor decay also favor blackleg development (Perombelon, 1992). An important environmental factor for blackleg development is soil water level. Presence of a water film on the tuber surface induces development of anaerobic conditions in the mother tubers, thereby favoring bacterial multiplication and initiation of rotting (Perombelon et al., 1989b). Anaerobiosis affects oxygen-dependent host resistance, allowing unhindered bacterial multiplication and cell wall degrading enzyme production resulting into a rotting lesion (Fuqua et al., 2001).

Another critical condition in disease development is the level of seed contamination as shown in the case of Pa. The higher the bacterial density is, the more likely the pathogen will predominate in the incipient lesion and the sooner rotting is initiated (Bain et al., 1990). Progeny tuber contamination is related to seed tuber contamination as well as blackleg disease (Toth et al., 2003). Although only limited data concerning *Dickeya* spp. are available, it seems that level of seed contamination is less important for blackleg development possibly because of their higher virulence (Velvis & van der Wolf, 2009).

Competition within rotting mother tubers, modulated by environmental conditions, temperature especially, determines which pathogen will predominate if more than one is present (Perombelon, 2002). The soft rot bacteria can also interact with other pathogens, especially vascular ones, such as *Ralstonia solanaecearum*, *Fusarium* spp., *Verticillium* spp. and *Rhizoctonia solani* (Tsror et al., 1990, Perombelon, 2002). Weakening of the host resistance by one pathogen may favour the development of another.

CONTROL STRATEGIES

Several approaches have been studied to control blackleg and tuber soft rot, but the degree of success has been variable. Methods based on avoiding contamination and reliance on seed certification schemes are widely used and have been partially successful. Improved store management can reduce bacterial load on tubers and tuber rotting. Both physical, especially hot water treatment, and chemical methods have been explored but with limited success. The use of
biological control has been and is still being attempted, but it is too soon to say how successful it will be. Finally, breeding for resistance has so far failed but the use of GM techniques is promising if politically feasible.

Avoiding contamination

When it was realized that blackleg is not a soil-borne disease, the blackleg plant was thought to be the main source of the pathogen. Therefore, disease control would be achieved by an indexing (certification) system of seed obtained from disease-free crops. In Europe, plant inspection services under national jurisdiction are responsible for certification of seed potatoes. The European Plant Protection Organization (www.eppo.org) provides standardized protocols and guidance for certification of plant material. Inside the European Union, the Phytosanitary Directives (2000/29/EG) describes general regulation on the crop production requirements and guidance for the member states in respect of good cultivation practices (for example in The Netherlands, NAK provides guidance for certification).

For more than half a century seed-potato certification has been the traditional approach to ensure that this objective is achieved. However, the degree of control achieved is erratic and heavily dependent on the weather prevailing during growth of the seed crop. The greatly improved understanding of blackleg epidemiology and aetiology can now explain why this approach has met with little consistent success. These measures cannot detect widespread latent infection of progeny tubers (the next generation seed) from symptomless plants as discussed above. Moreover, depending on weather conditions, heavily contaminated seed can give rise to little or no disease and the converse is also true. Despite this, the measures can do some good, for example, roguing at an early stage of crop growth which entails the removal of diseased plants including daughter tubers, no doubt contribute in reducing an important source of the pathogen. Rotting progeny tubers are common on symptomatic plants, from which bacteria can spread during mechanical handling at harvest and post-harvest.

Seed potato crops are classified into different seed grades according to several criteria including the level of roguing and blackleg, from nil to a given percentage depending on national certification scheme criteria. Seed crops are subjected to field inspections usually twice during the growing season in most seed producing countries in Europe. Infected crops can be downgraded to a lower seed category or rejected from the market. Harvested progeny tubers (future generation
seed) can be tested also with molecular and serological methods to detect latent infections. This, however, is not an obligatory part of testing programs yet. As tubers from disease-free crops are frequently contaminated, laboratory testing can help to detect latently infected tubers. In contrast to other bacterial diseases of potato where there is often zero tolerance, some contamination of seed tubers can be allowed, in particular in low grade seed. Therefore the use of a detection procedure is desirable which allows estimation of both the density of bacteria and the incidence of contaminated tubers.

The relationship between seed health status and its contamination level has not been fully evaluated. It involves several steps, namely collection of representative tuber samples from large quantities of seed lots, preparation of tuber tissue for testing, quantification method to be used and, last but not least, interpretation of the results in terms of blackleg risk assessment (Perombelon, 2000). An additional compounding factor is the high cost involved in testing for contamination level. One possibility is to restrict testing to the highest seed grades where tolerance level could be zero. Testing of tubers should include the peel to detect lenticel and wound infections and the stolon end including the vascular tissue.

When it was demonstrated that the seed (mother) tuber is an important source of the soft rot bacteria, attempts were made to produce pathogen free progeny (next generation) tubers. Initially, potato stem cuttings were used (Graham & Harper, 1967), later by axenically produced micro plants and currently in vitro produced minitubers which should produce bacteria-free progeny tubers (Stead, 1999). Minitubers are grown in a controlled pathogen-free environment, using aeroponic and hydroponic cultures or in artificial soil systems in order to prevent contamination with soft rot bacteria (Ranalli et al., 1994, Rolot & Seutin, 1999, Farran & Mingo-Castel, 2006, Ali et al., 1995). Testing of approximately 100 seed lots of minitubers per year during four consecutive years showed that minitubers were consistently free of blackleg causing bacteria (Velvis & van der Wolf, 2009).

In large scale seed potato production, multiplication of the initial minitubers in the field is necessary for economic reasons. However, this has led, even after only two or three field generations, to ca. 30%, contaminated with Dickeya spp. and 10% with Pa (Velvis & van der Wolf, 2009). Similar results were found in previous studies in Scotland, which showed that contamination of an initially bacteria-free potato stock became progressively more contaminated after the third year in the field. Interestingly contamination occurred at the time mechanical handling at harvest and grading in store became necessary (Perombelon et al., 1980). Therefore it is likely, that initial contamination came from machines.
already contaminated although contamination by air-borne bacteria cannot be ignored. In an attempt to overcome this problem, the number of generations from bacteria-free initial propagative material is restricted to a set number before loss of seed status in order to reduce buildup of contamination during seed stock multiplication.

Studies carried out in the eighties on the ecology of the bacteria have identified several sources of the bacteria to contaminate seed crops before and after harvest (Perombelon, 1992). This knowledge has allowed a more focused approach to reduce risks of introducing the bacteria at different stages of seed production. For example, it is desirable that crops should be dedicated as seed or ware since the tolerance levels for blackleg are different as well as harvesting time. However, for economic reasons, dual purpose crops are sometimes grown, harvested late to maximize yield and the seed size fraction separated later from the ware. It is unavoidable that quality would suffer (van der Zaag & Horton, 1983). Use of well-drained fields reduces the risk of tubers being surrounded by a water film that can result in anaerobiosis and consequently tuber decay in the field (Perombelon, 1992). Late harvesting allows bacterial multiplication on leaves and in debris left on the ground following haulm flailing. This may result in contamination of progeny tubers underground during wet weather conditions (Burgess et al., 1994).

Monitoring tuber contamination during bulking in crops derived from stem cuttings over five years on five seed producing farms in Scotland showed that farms which regularly applied hygienic measures consistently produced cleaner seed than the others (Perombelon et al., 1980). Washing and disinfection of machines used when planting, spraying, haulm flailing, harvesting and grading in store no doubt help in reducing risks of introducing soft rot bacteria in a pathogen-free crop (Perombelon & Kelman, 1980, Perombelon, 2002). Spreading and smearing of the bacteria in a seed lot can be reduced by removal of rotten tubers during harvesting and grading. Avoidance of wounding by correct machinery adjustment during harvesting and grading is important to reduce the risks of wounding in which bacteria can survive after wound healing (Perombelon, 1992, Van Vuurde & De Vries, 1994). Use of mature tubers with a well-developed periderm will also reduce risks on wounding.

Storage in bulk or preferably in one tonne boxes in the case of seed in well-ventilated stores at low temperatures will avoid condensation on tuber surface which in turn will prevent multiplication of the blackleg pathogen. If the tubers remain wet long enough tuber decay can ensure that result in further spread of the bacteria when tubers are graded and sometimes massive tuber decay (Perombelon, 2000). It is critical to dry rapidly the tubers by forced ventilation with warm air to
Control of Dickeya and Pectobacterium species in potato

favour wound healing followed by cooler air for controlling sprouting and long term storage (Wale et al., 1986, Wale & Robinson, 1986). Good storage management is of importance not only to prevent tuber decay but also avoid increasing the tuber inoculum load which would result subsequently in greater disease risks.

Reduction in the incidence of tuber infections with blackleg and soft rot bacteria can be achieved by using true botanical seed instead of seed tubers. Such seed derived from sexual crosses are believed to be free from blackleg and soft rot bacteria (Perombelon & Kelman, 1980). Although soft rot bacteria are not easily transferred to botanical seed via vascular tissue, some reports suggest that true seed may also become externally contaminated with low populations of the bacteria (Colyer & Mount, 1983). However, this externally sited inoculum can be removed by hot water or chlorine treatments (Colyer & Mount, 1983).

For the majority of developing countries, seed potato classification schemes have failed or are not available at the moment whereas imported seed potatoes are often too expensive (van der Zaag & Horton, 1983, Chujoy & Cabello, 2007). In particular in these countries, the use of true botanical seeds may be an attractive and a low cost alternative for the use of seed tubers. The main advantage of using true seed is that they can be easily produced in large numbers (Chujoy & Cabello, 2007). Above all, botanical seed do not require cold storage facilities. They can be kept in simple stores for a long time, which is of considerable importance in hot regions in developing countries (Wiersema, 1986). However, its major drawback is the genetic diversity of the produce which requires that every generation has to be carefully selected for desirable traits to ensure a stable and as uniform as possible crop (Chujoy & Cabello, 2007).

Effect of nutrition on plant resistance to blackleg and soft rot

Plant nutrition is believed to be an important component of natural disease resistance. Nutrition affects growth of plants, the interaction with pathogens as well as other plant associated microorganisms and in general is important for plant fitness status (McGovern et al., 1985). Deficiency of essential elements will often result in an increased susceptibility to diseases.

Calcium plays an important role in the resistance of plants against bacterial pathogens (Bateman & Miller, 1966, Berry et al., 1988). A high calcium content in crops is often positively related with an increased resistance against bacterial diseases including potato blackleg (Berry et al., 1988, Platero & Tejerina, 1976, McGuire & Kelman, 1984). Calcium ions improve the structure and integrity of
plant cell wall components, resulting in higher resistance to diseases involving tissue maceration.

Calcium fertilization is known to reduce soft rot caused by *Pectobacterium* spp. in Chinese cabbage (Park, 1969) and in bean (Platero & Tejerina, 1976). McGuire and Kelman (1984) showed, both in in vitro and field experiments, that bacterial soft rot caused by Pa was negatively correlated with calcium concentration in tubers. Resistance to blackleg and tuber soft rot appeared to be related to calcium concentration in seed tubers, but the results varied between the cultivars tested and over the three years of field experimentation (Pagel & Heitefuss, 1989).

Calcium is not equally distributed inside plant parts and in particular, potato tubers often have a low calcium level (Collier et al., 1980, Dunn & Rost, 1945). Soils naturally low in Ca can be amended by adding CaSO₄ (gypsum) to increase resistance not only to blackleg but also to soft rot of progeny tubers (Bain et al., 1996).

The level of nitrogen seems to be another factor that can affect susceptibility to soft rot pathogens. High levels of nitrogen, between 1050 and 1700 ppm (parts per million), significantly reduced bacterial leaf blight of *Philodendron selloum* caused by *Dickeya* spp., but resulted also in a significant deterioration of plant growth (Haygood et al., 1982). The effect of nitrogen levels on blackleg and soft rot in potato has not been explored apart from a study by Graham and Harper (1966) who showed that blackleg incidence caused by Pa was lower in field plots treated with high than with low level of N fertilizers (Graham & Harper, 1966).

A balanced fertilization of potato plants and an increase of the calcium content in soils alone will not provide sufficient control of blackleg and soft rot pathogens. It may however, be a part of an integrated control strategy.

Breeding for resistance

Traditional breeding

Commercial potato cultivars which are naturally immune to blackleg and soft rot caused by *Dickeya* and *Pectobacterium* species do not exist, but some cultivars show a partial resistance (Lyon, 1989). Attempts to breed potato cultivars with increased levels of resistance were only partially successful and never resulted in immune cultivars probably because of the narrow range of genetic diversity in parental breeding material used (Tzeng et al., 1990). In any event, breeding for
Control of Dickeya and Pectobacterium species in potato

Soft rot resistance has not been given a high priority in most breeding programmes relative to other diseases and desirable agronomic traits. At best, cross progeny was sometimes screened only at advanced selection stages for their resistance and the results then might be taken into consideration in the final selection.

Furthermore, screening for resistance is not straightforward. Cultivar resistance/susceptibility to blackleg and tuber soft rot are not always correlated, rather, different combination patterns are common (Perombelon & Salmond, 1995).

Several methods to screen for blackleg and soft rot resistance in breeding lines have been described. Ranking of cultivars for resistance to tuber soft rot caused by Pa varied according to inoculation method, presence or absence of oxygen and laboratory and field assessments (Łojkowska & Kelman, 1994, Bain & Perombelon, 1988). Moreover, resistance/susceptibility ranking of cultivars varied from one season to another (Perombelon & Salmond, 1995). Ultimately, field experimentations is the only reliable way to evaluate resistance of potato lines against blackleg and soft rot diseases (Allefs et al., 1995).

The relatively low resistance to blackleg and soft rot in cultivars can be strengthened by utilizing the high levels observed in wild potato species (Dobias, 1977, van Soest, 1983, French & de Lindo, 1985, Corsini & Pavek, 1986). More than 200 wild Solanum species present in North and South American and European potato collections contain a large reservoir of useful genetic material, including resistance to soft rot bacteria (Hijmans & Spooner, 2001). The majority of these species are diploids which facilitate hybridization with S. tuberosum compared to Solanum spp. tetraploids (Watanabe et al., 1994). These include S. canasense and S. tarijense (Carputo et al., 1997) and S. tuberosum subsp. andigena, believed to be the direct ancestor of the common potato, which showed relatively high levels of tuber and stem resistance to both Pectobacterium and Dickeya species (Hidalgo & Echandi, 1982). Sexual hybrids between S. tuberosum and S. phureja commonly used in breeding programs also displayed relatively high resistance but tuber yields were reduced (Rousselle-Bourgeois & Priou, 1995). When the wild Solanum species, S. commersonnii, known for its resistance to frost, nematodes and fungi, was crossed with S. tuberosum, the hybrids showed high resistance to both Pectobacterium and Dickeya species when screened on potato slices and in greenhouse experiments and field trials (Laferriere et al., 1999). Similarly, hybrids of commercial potato and S. stenotomum resulted in lines with a higher resistance to blackleg and soft rot bacteria (Fock et al., 2001). Sexual hybrids of S. tuberosum and S. chacoense, S. sparsipillum and S. multidissectum also showed higher resistance to blackleg than commercial S. tuberosum cultivars but at the same time
had a higher glycoalkaloid content, hence a higher toxicity to man and animals (Carputo et al., 1997).

S. brevidans is a diploid wild *Solanum* species that naturally does not produce tubers but bears resistance to several potato viruses and frost. Somatic hybrids obtained by fusion of protoplasts of *S. tuberosum* and *S. brevidans* showed a high level of resistance to blackleg and soft rot. Their resistance was attributed to the higher degree of esterification of cell wall binding pectin (McMillan et al., 1994). Resistance to *Dickeya* and *Pectobacterium* bacteria was stable and could be sexually transferred to the progeny in the F1 and F2 generations as well as in backcrosses with *S. tuberosum* cultivars (Zimnoch-Guzowska et al., 1999, Zimnoch-Guzowska & Łojkowska, 1993). This indicates that even relatively far-related Solanum species can be used to create hybrids with resistance to blackleg and soft rot (Austin et al., 1988).

So far traditional breeding has not succeeded in producing potato cultivars immune to *Pectobacterium* and *Dickeya* spp. Although none of the above results have been pursued further in breeding programmes, they indicate that classical (traditional) breeding for resistance against blackleg and soft rot can result in potato lines more resistant to *Pectobacterium* and *Dickeya* (Glendinning, 1983). However, breeding usually is a long process taking more than 10 years of screening and trialling to ensure that the selected material do not carry over undesirable traits. None of the hybrid lines have been commercialized at present.

Genetically modified potato plants (GMO-potato plants)

Genetic engineering is a promising alternative to traditional plant breeding, which is limited to closely related species and is time consuming. An already established cultivar could be modified to increase resistance without the need to undergo time consuming field trials for other traits. In Europe, however, introduction of genes into crops from non-crossable species to improve their quality is not readily accepted by society. For a long time, there was a moratorium on the cultivation of genetically modified (transgenic) crops and only recently, in March 2010, the first genetically modified potato cultivar with increased starch content for industrial use was allowed in Europe. (http://www.nytimes.com/2010/06/11/world/europe/11sweden.html).

Only limited amount of work has been done so far using genetic modifications to increase resistance against bacterial pathogens. In the case of blackleg and soft rot bacteria, work has involved only in vitro plants and none of the transgenic potato lines have been exploited commercially. At present, single
Control of Dickeya and Pectobacterium species in potato

genes used to improve resistance are those coding for proteins that are bactericidal, impede pathogen multiplication or prevent pathogen-host or pathogen-pathogen interactions. Few if any of the transgenic resistance in tubers was verified under anaerobic conditions essential for rotting initiation. Lysozymes are enzymes that lyse bacteria cells by degradation of their cell wall. T4 and chicken lysozymes are well described proteins showing broad bactericidal activity. Potato plants modified to produce T4 or chicken lysozyme, showed an increased resistance to Pa in greenhouse assays (Düring, 1996, Serrano et al., 2000). However, introduction of these genes in potato plants may be harmful to naturally present beneficial bacterial populations of the potato rhizoplane and rhizosphere. It was observed that in transgenic potato plants, T4 lysozyme is released from roots into the soil and is able to kill *Bacillus subtilis* (Ahrenholtz et al., 2000) and probably also other bacteria present on the root surface. Peptides and proteins, such as attacin and cecropin, that were found in the humoral immune response in insects, also showed antibacterial activity (Arce et al., 1999). Cecropins and its synthetic analogues showed antibacterial activity in in vitro tests, and potato plants transformed with genes coding for attractin and cecropin analog SB-37 were generally more resistant to blackleg than the untransformed control strains, but the results were variable. When invading plant tissue, blackleg and soft rot pathogens produce large quantities of pectolytic enzymes that degrade plant cell wall components (Hugouvieux-Cotte-Pattat et al., 1996). Degradation of plant tissue cell wall generates polygalacturonate products that are used by the bacteria as a substrate for energy and biosynthesis but may also act as positive signals for the further production of pectolytic enzymes depending on the length of the galacturonate chain (Lyon, 1989). Production of pectolytic enzymes induced mainly by the presence of unsaturated digalacturonates released from the polygalacturonic polymers. Weber et al. (1996) proposed that expression of enzymes such as pectate lyases that can degrade these signals in transgenic potato plant tissue should inhibit the synthesis of large quantities of enzymes responsible for tissue maceration (Weber et al., 1996). Transgenic potato plants modified to produce pectate lyase were found to be resistant to infection caused by *Pc* in in vitro experiments and in planta tests (Wegener et al., 1996, Wegener, 2001). Many secondary plant products including flavonoids (e. g. anthocyanin), steroidal alkaloids, and saponins show antibacterial activity against plant pathogenic bacteria (Hirotani et al., 2000). Their synthesis and modifications in plant tissues are controlled by different enzymes of which glucosyltransferases seem to play an important role. Lorenc-Kukula and co-workers (2005) produced transgenic potato
plants with increased 5-O-glucosyltransferase level. The ectopic over-expression of 5-O-glucosyltransferase improved resistance of potato tubers against *P. carotovorum* in in vitro experiments. The resistance to soft rot was at least 2-fold higher in transgenic lines than in non-transformed control tubers (Lorenc-Kukula et al., 2005).

Bacteria sense their population density by a cell to cell communication mechanism in which particular genes are expressed only when the threshold bacterial density (quorum) is reached (von Bodman et al., 2003). This mechanism, known as quorum sensing, controls diverse biological processes in human, animal and plant pathogenic bacteria including virulence. Communication between cells occurs via small, diffusible signal molecules and in Gram negative bacteria it is mediated mainly by acyl homoserine lactones (AHLs) (Fuqua et al., 2001). AHLs regulate virulence gene expression in *Pectobacterium* and *Dickeya* species possibly to ensure that infection will start only if the bacterial density is large enough to overwhelm plant response (Andersson et al., 2000, Reverchon et al., 1998). Bacteria of the genus *Bacillus* possess an AHL lactonase gene which blocks the quorum sensing mechanism by enzymatic degradation of signal molecules. When that gene was cloned and is expressed in commercial potato cultivars, the transgenic plants showed a high level of resistance against *P. carotovorum*. Either symptom expression was entirely blocked or symptoms development was significantly reduced (Dong et al., 2001).

Objection to GM plants could be overturned by producing cisgenic rather than transgenic potato plants. In a cisgenic approach, recipient plants are modified with resistance genes from cultivars or lines of the same or sexually compatible (crossable) species. The advantage of cisgenic over transgenic plants is that use of a gene of interest already present in the species for centuries does not alter the gene pool and/or provides no additional traits (Schouten et al., 2006). Current research is looking at the potato-soft rot bacteria interaction at a molecular level. Bacterial proteins active during infection provide clues on resistance responses in potato clones with known different resistance levels and markers suitable for marker-assisted breeding could be developed. It is hoped that this would allow rapid introgression of resistance into cultivars (König et al., 2004, Phipps & Park, 2002). To date, no resistance genes have yet been identified to control blackleg and soft rot of potato for use in a cisgenic approach. It is likely that more than one gene would be involved which would complicate the task.

Although promising results have been obtained, it is a long way before genetically modified potato plants resistant to soft rot bacteria become commercially available. Research has been restricted to laboratory or greenhouse
Control of Dickeya and Pectobacterium species in potato

studies and none were conducted under field conditions to test the performance of resistant lines in the field or to assess potential environmental risks of release of the genetically modified plants. At present it is likely that future research will focus on identification of resistance genes which could be used in a cisgenic approach.

Physical seed tuber treatment

The traditional method to conserve seed tuber in good health has been storage in ventilated stores at low temperatures (ca. 5 °C). These conditions are easily met in temperate countries when temperatures in stores can be regulated using cold outside air over the winter until planting time in the spring. However, in tropical and subtropical regions, unless expensive refrigerated stores are available, storage is a real problem. At high ambient temperatures, not only dormancy is restricted but also infection by pests, fungi and particularly soft rot bacteria can cause serious losses. This is an important factor limiting potato production in these regions.

Disease can develop before cold storage or in transit to the market and specific treatments become useful. Physical control mainly by heat is recognized as competitive to biological and chemical methods as it does not require registration, and it may be effective against a broad range of pathogens. However, physical procedures affect not only superficially located pathogens but also beneficial micro-organisms and may negatively influence tuber emergence and health. Most of the information that is available on physical control of plant pathogens in potato comes from the control of *Pectobacterium* spp. under postharvest storage conditions. There is only limited information concerning *Dickeya* spp. The physical factors applied in controlling tuber soft rot infection are those involving hot water, steam (Robinson & Foster, 1987, Shirsat et al., 1991), dry hot air (Bartz & Kelman, 1985) and UV and solar radiation (Ranganna et al., 1997, Bdliya & Haruna, 2007).

Hot water treatment of potato tubers to control soft rot bacteria contamination was first applied in 1983 (Mackay & Shipton, 1983). Pcc and Pa could not be detected in tuber peel after dipping naturally infected potato tubers for 10 min in water at 55 °C. In field experiments, no blackleg was observed in plants grown from treated tubers. Similar results were obtained by Wale and Robinson (1986) and Shirsat et al. (1991), who showed that incubation in water at 44.5 °C for 30 min or at 56 °C for 5 min significantly reduced the periderm and lenticel contamination of seed potatoes and consequently blackleg incidence in the field (Shirsat et al., 1991, Wale & Robinson, 1986). However, failure to dry large
quantities of the tubers rapidly could result in multiplication of any surviving bacteria and even rotting. This difficulty was overcome by a continuous hot water treatment in which 50 kg batches were continuously treated for 5 min at 55 °C followed by drying under forced ventilation with air knives. Cooling of the water when large number of tubers are immersed is avoided and any residual moisture evaporated by the latent heat still in the tubers (Perombelon et al., 1989a). Effective blackleg control was obtained in field experiments with both vacuum infiltrated and naturally contaminated tubers. Moreover, the treatment led to the control of several fungal pathogens causing gangrene, skin spot, silver scurf and black scurf (Dashwood et al., 1991). The temperature/time combination used is critical, more so in bulk tuber dipping than in the continuous treatment. However, several side effects can adversely affect growth and have to be taken into consideration: depending on the cultivar used, tuber physiology can be altered resulting in delayed sprouting or may even be lethal to the tubers, and as a result, yield can be affected (Robinson & Foster, 1987, Perombelon et al., 1989a).

Steam was also tried as an alternative for hot water treatment to remove fungi and bacteria, especially Pc and Pa present superficially in the tuber periderm. The use of steam treatment reduced infestation of tuber periderm from 26 - 59% to 1-3% (Afek & Orenstein, 2002).

Bartz and Kelman (1985) reported that external but not internal populations of Pectobacterium spp. can be eliminated from washed tubers by application of hot dry air at 50 °C. Hot dry air also dries the tubers and stimulates wound healing without interfering with tuber sprouting as much as hot water treatment. However, generally heat transmission by air is less effective than by water necessitating a longer incubation time which could adversely affect tuber physiology.

Ranganna and co-workers (1997) tested the influence of UV radiation to control Pcc in potato tubers. When tubers were inoculated by vacuum infiltration 6 h before radiation, bacteria were totally eliminated by a relatively low UV dose of 15 kJ m⁻². Vacuum infiltrated tubers with Pcc and exposed to direct sun light for at least 180 min did not develop soft rot symptoms, probably more because of an increase in the temperature of tuber superficial tissues than the action of UV energy, which is unable to penetrate tuber tissue to reach the pathogens. However, the practical value of the last three methods when applied on a large scale involving several tonnes of tubers is doubtful.

In conclusion, physical control methods, especially hot water treatment, are environmental friendly, allows some control of blackleg caused Pectobacterium
Control of Dickeya and Pectobacterium species in potato

spp. as well as of several superficial fungal pathogens simultaneously. Their limitations, however, are the inability to kill plant pathogenic bacteria located deep inside the tubers (vascular level) without a negative effect on plant growth, they are not cheap to run and can be difficult to expand for large scale use.

Chemical seed treatment

Chemical control strategies used against bacterial diseases are based on the eradication of the pathogen and/or the creation of unfavorable environmental conditions (e. g. low or high pH etc.) for disease development. Once disease has been initiated, disease control is limited because of rapid bacterial multiplication, and spread and inability of the chemicals to penetrate within the inner tissues (Bartz & Kelman, 1985). Therefore, disease control has focused on latently infected tubers rather than blackleg affected plants. A wide range of chemical compounds have been tested to reduce infection on or inside tubers by *Pectobacterium* spp. and *Dickeya* spp.

Most compounds used contain antibiotics (mainly streptomycin and its derivatives), inorganic and organic salts or combinations of the compounds. For a long time, streptomycin was considered as a promising control agent against blackleg and soft rot diseases in potato. Seed tubers immersed in a mixture of streptomycin and oxytetracycline hypochloride or streptomycin and mercury compounds before planting reduced the incidence of blackleg in the field and tuber decay in storage (Bonde & de Souza, 1954). Similar results were obtained when kasugamycin or virginiamycin was substituted for streptomycin (Bartz, 1999, Wyatt & Lund, 1981). However, although treatments with antibiotics showed promise, larger scale field studies are no longer allowed because of the risks of introducing resistance to bacterial human or animal pathogens.

As an alternative to antibiotics, a wide range of potential bactericides have been tested, more often in small laboratory scale experiments than in the field. Thus, organic compounds like hydroxyquinoline and 5-nitro 8-hydroxyquinoline were effective to control soft rot in wounded potato tubers (Harris, 1979). Similar results were obtained with chlorine based compounds, bronopol (2-bromo-2-nitropropane-1,3-diol) and the synthetic bactericide, 7-chloro-1-methyl-6-fluoro-1,4-dihydro-4-oxo-3-quinolinic carboxylic (Bartz & Kelman, 1986). Immersion of potato tubers in citric, acetic, ascorbic or malonic acids also reduced rotting by Pcc in freshly vacuum-infiltrated potato tubers without affecting sprouting in in vitro conditions. (Bartz & Kelman, 1986). Mills et al. (2006) showed that certain inorganic and organic salts like aluminium acetate, sodium metabisulphate, propyl
paraben, sodium benzoate, alum (hydrated potassium aluminium sulphate), potassium sorbate, calcium propionate, sodium hypochloride, sodium bicarbonate, aluminium chloride and copper sulphate could inhibit the growth of Pcc and Pa in vitro (Mills et al., 2006).

Some of these salts have already been approved as food preservatives and consequently their use to control soft rot bacteria would need limited additional registration testing. The activity of organic and inorganic salts may be attributed to the presence of cationic ions released from the salts that inhibit bacterial cell membrane protein functions or by modulation of the environmental pH by the anion moiety (Mills et al., 2006).

Synthetic antimicrobial peptides were evaluated as a group of antibacterial agents that by interacting with the bacterial cell membrane increase its permeability (Gabay, 1994). Kamysz et al. (2005) reported that synthetic peptides CAMEL was active against Pa and Dickeya spp., thereby protecting potato tuber tissue from rotting. CAMEL (an antimicrobial peptide: KWKLFKKIGAVLKVL) is a hybrid peptide derived from two naturally present antibacterial peptides cecropin A and melittin (Oh et al., 2000). CAMEL showed greater protection to potato tubers against Pa and Dickeya spp. than streptomycin (Kamysz et al., 2005).

These chemical treatments of tubers to control blackleg and tuber soft rot are far from being straightforward as the above results would suggest. First there is the problem of reaching the bacteria usually well protected in lenticels, suberised wounds and the vascular system. Even systemic bactericides, if available, would fail if applied post-harvest because there is no vascular activity in harvested tubers.

A gaseous bactericide might be more successful but penetration in tubers is likely to be poor and can be phytotoxic, as found by Eckert and co-workers (1988) in the case of chlorine gas.

The apparent success mentioned above can be explained by the fact that freshly harvested tubers with unsuberised lenticels and wounds were used. It may be also that testing was done on cut seed tubers; the use of cut seed is common practice in some countries (Eckert & Ogawa, 1988). In addition, treating large quantities of tubers after harvest with a liquid bactericide unavoidably would require efficient drying of the tuber surface to prevent multiplication of the bacteria and rotting depending on how they are stored. For example, one treatment option would be treating freshly harvested washed new tubers at the last rinse with hypochlorite solution to reduce superficial inoculum load, followed by drying by forced ventilation using air knives to minimize the risks of rotting when stored in plastic bags in supermarkets.

Biological control

Biological control of plant pathogenic bacteria could be an alternative to chemical and physical control and breeding for resistance. Biocontrol strategies comprise the use of antagonists affecting pathogen populations directly, via antibiosis, competition for nutrients or by induction of plant systemic resistance (Howarth, 2003). Although several attempts have been made to control *Pectobacterium* spp. and *Dickeya* spp. on potato by using biological control agents, most were restricted to in vitro overlay studies, potato slice assays or using in vitro raised potato plants and few included field experiments to check for consistency of results. Only the more recent work will be discussed here.

It has long been shown that bacteria isolated from the potato rhizosphere or those isolated from potato tuber periderm can be used successfully to protect potato tubers from *Dickeya* and *Pectobacterium* infections in laboratory conditions (Kloepper, 1983, Jafra et al., 2006, Rhodes & Logan, 1986). Initial selection of the control agent was based on random occurrence of bacteria which inhibited growth of soft rot bacteria in in vitro overlay studies. Further selection was based on characters likely to be inimical to soft rot bacteria. The agent is usually applied to seed tubers to control blackleg and rarely to control soft rot in stores.

In general soil fluorescent and non-fluorescent *Pseudomonas* spp. obtained by in vitro screening have shown to be potential candidates for biological control of blackleg and soft rot diseases (Kastelein et al., 1999). They are able to survive in the potato rhizosphere and in soil (Azad et al., 1985, Loper & Henkels, 1999, Kloepper, 1983, Gross, 1988) and produce a variety of secondary antibacterial metabolites (Weller, 1988) including mainly siderophores, antibiotics and surfactants (Kloepper et al., 1980, Cronin et al., 1997, Compant et al., 2005).

Fluorescent *Pseudomonas* spp. applied to tubers were able to reduce populations of blackleg and soft rot bacteria on potato roots and inside progeny tubers (Kloepper, 1983). They also apparently could control soft rot on potato when applied as a bacterial suspension directly to the tuber periderm (Colyer & Mount, 1984). Cronin and co-workers (1997) used *Pseudomonas fluorescens* strain F113 producing 2, 4-diacytethylphloroglucinol (DAPG) to control Pa in vitro and on potato tubers. The wild type strain F113 was able to inhibit the growth in vitro and colonization of tubers by Pa, whereas a F113 mutant unable to produce DAPG was not effective, indicating that biocontrol occurred via antibiosis.

Kastelein et al. (1999) used strains of *P. fluorescens* to protect wounds and cracks on tubers from colonization by Pa. Application of individual and combination of strains resulted in the decrease of contamination of potato tuber
peel by 85% and 60-70% respectively indicating the potential of Pseudomonas spp. for controlling the soft rot disease caused by Pa.

Lactic acid bacteria are commonly found on fresh fruits, vegetables and milk products and pose no risk to human or animal health. *Lactobacillus plantarum*, *Lb. acidophilus*, *Lb. buchneri*, *Leuconostoc* spp. and *Weissella cibaria* isolated from fresh fruits and vegetables showed in vitro antagonistic activity in overlay assay towards Pcc which was attributed to production of hydrogen peroxide and acidification of the medium (Trias et al., 2008). In general, lactic acid bacteria possess different modes of action, mainly the production of organic acids, hydrogen peroxidase and siderophores which can be effective for biocontrol. Lactic acid bacteria are able to inhibit more than one phytopathogen, thus *Lb. plantarum*, *W. cibaria* and *Lb. acidophilus* also inhibit the fungus *B. cineria*. They have a wide range of growth temperatures, ranging from 8 to 45 °C, which provide possibilities for broad applications (Trias et al., 2008).

Gram positive *Bacillus subtilis* BS 107 that was selected for its broad antibiotic activity towards different plant pathogenic bacteria and fungi was used as a biocontrol agent against soft rot and blackleg causing bacteria (Sharga & Lyon, 1998). The strain was active in overlay assays against not only human pathogenic or opportunistic *P. aeruginosa*, *Klebsiella pneumoniae*, *Micrococcus luteus*, *Staphylococcus aureus* and *Escherichia coli*, but also plant pathogenic Pcc, Pa and *Dickeya* spp., *P. syringae* and *Xanthomonas campestris*, which indicates that it is a potentially powerful agent to control different plant diseases. Cladera-Olivera et al. (2006) reported bacteriocin-like substance produced by *Bacillus licheniformis* P40 that was bactericidal to Pcc. This substance interacts with cell membrane lipids and provoking lysis of Pcc cells. It was also effective in protecting potato tubers against soft rot under standard storage (Cladera-Olivera et al., 2006).

Jafra et al (2006) focused on bacteria able to degrade quorum sensing signal molecules produced by *Pectobacterium* spp. and *Dickeya* spp. which is a useful and effective strategy for the control of the bacteria by preventing the secretion of large quantities of pectolytic enzymes to macerate tuber tissue. The result of this work was a selection of several bacteria isolates (e. g. *Delftia* spp., *Ochrobactrum* spp., *Rhodococcus* spp.) able to control pectinolytic bacteria by the quorum quenching mechanism in which infection of potato plants by target bacteria *Dickeya* and *Pectobacterium* was attenuated.

Predatory bacteria are ubiquitous in nature, present in different environments and able to invade and consume other bacteria (Stolp & Starr, 1963). *Bdellovibrio bacteriovorans* is a motile, δ-proteobacterium that preys on Gram-
Control of Dickeya and Pectobacterium species in potato

negative bacteria (Rendulic et al., 2004). Epton et al. (1990) tested different strains of *B. bacteriovorans* to control Pa on potato (Epton et al., 1990). Only limited control of soft rot however was obtained in potato slice assays when co-inoculated with Pa and *B. bacteriovorans*. The main difficulty in using *B. bacteriovorans* as a biocontrol agent is that interaction with host prey bacterial cells is ruled by specific predator-prey relationship which assumes that the populations of both micro-organisms may fluctuate without complete eradication of the target bacterium (Crowley et al., 1980). Thus, Varon and Zeigler (1978) estimated that *Bdellovibrio* spp. were efficient as predators only when large populations of target bacterium are present. The minimum population density required for biocontrol of the target bacterium is about 10^5-10^6 cfu ml-1 which in case of *Dickeya* and *Pectobacterium* spp. may already be high enough to establish infection in plants under conditions favourable to disease (Varon & Zeigler, 1978). Finally, as *B. bacteriovorans* feeds on *Pectobacterium* spp., it is impossible to use *Bdellovibrio* spp. to prevent contamination in soft rot bacteria-free tubers.

Another possibility to control bacterial diseases of plants is the use of bacteriophages. Bacteriophages are viruses that infect and lyse bacterial cells. They are specific to their hosts and do not infect other micro-organisms. They are self-replicating, persistent in the environment and safe to use, as they cannot infect humans or animals. It has already been shown that bacteriophages possess the potential to control plant pathogenic bacteria (e. g. *Erwinia amylovora*, *Agrobacterium tumefaciens*) (Jones et al., 2007). However, their use is limited as they are non-motile and the target bacteria tend to become rapidly resistant. Until now, little attention was paid to the use of bacteriophages to control soft rot and blackleg bacteria in potato, but since Ravensdale et al (2007) had success in controlling up to 50% soft rot incidence on calla lily tubers inoculated with Pcc in greenhouse trials, there has been greater interest in this approach (Ravensdale et al., 2007).

Up to now, no commercial biocontrol agents active against blackleg and soft rot bacteria have been produced. In fact there are few instances of this approach being successful in other crop-pathogen systems. The main difficulty is the requirement for the antagonist to satisfy several criteria. It has to reach its target which in the case of potato would be located in lenticels, suberised wounds and vascular system, sites not readily available at all times. Then, to be active, the agent needs to survive and multiply, preferably becoming established in the tuber and in the rhizosphere microflora. Another requirement is the preparation of a stable formulation. Too often previous attempts have failed because some of the above criteria were not met. Moreover, transfer of small to large field scale testing can be
tricky because of annual variation in the weather, resulting in lack of consistency in the results. Finally, there is the costly and time-consuming registration of biological control agents which would require expensive large-scale field experiments and eco-toxicological studies (Weller, 1988).

A possible approach which takes into account most of the above requirements is the application of the selected antagonist bacteria, preferably spore forming, at the initial stage in seed stock multiplication. Inoculation of micro plants producing minitubers or of the microtubers before planting could allow establishment of the agent which could persist in later generations in the field. Protection of the first generations of seed crops is crucial, as control at that stage would reduce the risks of multiplication and spread of the pathogens at a later stage, at least in the high grade seed lots.

CONCLUSIONS AND PERSPECTIVES

Although many different control strategies against *Pectobacterium* spp. and *Dickeya* spp. have been employed, effective control of blackleg and soft rot diseases has not yet been achieved. Until highly resistant cultivars become available, disease control measures will continue to rely primarily on avoidance of contamination in the production of healthy certified seed. This is primarily based on seed derived from bacteria-free minitubers, the use of rigorous seed certification schemes and strict hygienic practices. Knowledge of the pathogen sources and contamination pathways should justify the application of hygienic measures, especially at harvest and post-harvest. Control strategies can be supported also by tuber treatments as discussed above. Only an integrated disease control strategy is likely to succeed in reducing blackleg and soft rot incidences effectively in seed and thence ware crops. The presence recently of the apparently more virulent forms of *Dickeya* spp. relative to *Pectobacterium* spp. should give a new urgency to research, notably on diagnostics, initial crop contamination and breeding for resistance.