Chapter 3

Image-guided tumor resection using real-time near-infrared fluorescence in a syngeneic rat model of primary breast cancer

Breast Cancer Res Treat; In press.
ABSTRACT

Tumor involvement of resection margins is found in a large proportion of patients who undergo breast-conserving surgery. Near-infrared (NIR) fluorescence imaging is an experimental technique to visualize cancer cells during surgery. To determine the accuracy of real-time NIR fluorescence imaging in obtaining tumor-free resection margins, a protease-activatable NIR fluorescence probe and an intraoperative camera system were used in the EMR86 orthotopic syngeneic breast cancer rat model. Influence of concentration, timing and number of tumor cells were tested in the MCR86 rat breast cancer cell line. These variables were significantly associated with NIR fluorescence probe activation. Dosing and tumor size were also significantly associated with fluorescence intensity in the EMR86 rat model, whereas time of imaging was not. Real-time NIR fluorescence guidance of tumor resection resulted in a complete resection of 17 out of 17 tumors with minimal excision of normal healthy tissue (mean minimum and a mean maximum tumor-free margin of 0.2 ± 0.2 mm and 1.3 ± 0.6 mm, respectively). Moreover, the technique enabled identification of remnant tumor tissue in the surgical cavity. Histological analysis revealed that the NIR fluorescence signal was highest at the invasive tumor border and in the stromal compartment of the tumor. In conclusion, NIR fluorescence detection of breast tumor margins was successful in a rat model. The present study suggests that clinical introduction of intraoperative NIR fluorescence imaging has the potential to increase the number of complete tumor resections in breast cancer patients undergoing breast-conserving surgery.
INTRODUCTION

Incomplete tumor resections are an important clinical problem in breast cancer surgery. Tumor involvement of resection margins is found in 5-40% of patients who undergo breast-conserving surgery and these patients require additional surgery or intensified radiotherapy. Furthermore, additional biopsies of the surgical cavity after primary resection have been shown to contain residual disease in 10% of patients with tumor-free specimen margins. As a result, 5-year isolated local recurrences rates of 6.7-11% are reported in patients with tumor-free specimen margins treated with breast-conserving surgery and radiotherapy. The occurrence of local relapse reduces the 15-year breast cancer specific and overall survival. Consequently, increase of the radical resection rate will likely improve breast cancer outcome. Intraoperative real-time visualization of cancer cells is a promising method to achieve that goal.

Near-infrared (NIR) fluorescence imaging is an experimental technique that can be used to visualize cancer cells during surgery. In current surgical practice, surgeons can only rely on palpation and visual inspection. Therefore, the use of NIR fluorescence imaging can be of great value, as already demonstrated in patients with glioma and liver cancer. Advantages of NIR fluorescence light (700-900nm) include high tissue penetration (up to several centimeters deep) and low autofluorescence providing sufficient signal-to-background ratio. Moreover, as the human eye is insensitive to NIR wavelengths, the use of NIR light will not interfere with the surgical field.

NIR fluorescence probes can target tumor cells through several mechanisms. For example, fluorophores can be conjugated to a tumor-specific antibody (e.g. directed to the Her-2/neu receptor), labeled to glucose derivates in order to visualize elevated metabolic rate, or autoquenched fluorophores can be activated by enzymatic cleavage in order to become fluorescent. The latter is of particular interest as certain enzyme systems are upregulated by a wide variety of cancer types, thus providing a more universally applicable NIR fluorescence probe. Proteolytic enzymes and in particular cathepsins from the cysteine protease family are a good candidate as they play essential roles in tumor growth, angiogenesis, resistance to apoptosis, and invasion. A member of this family, cathepsin B, is commonly active in the tumor microenvironment in various human cancers including breast cancer. Upregulated expression of cathepsin B is found in tumor, endothelial and immune cells, in particular macrophages. Cathepsin B overexpression in human breast carcinomas is associated with poor differentiation, lymph node involvement, absence of estrogen receptor expression and impaired overall survival.

The protease-activatable NIR fluorescence probe ProSense (PerkinElmer, Waltham, USA) has been shown to detect a variety of tumors in nude or transgenic mice. However, as tumor progression and metastasis are regulated by the surrounding microenvironment, it is important to use syngeneic animal models
that allow appropriate crosstalk at the invasive tumor border to study probes that are activated by proteolytic activity. Moreover, the use of a larger animal model such as the rat offers more challenges in terms of tissue penetration of NIR fluorescence probes.

Therefore, the aim of this study was to assess the technique of NIR fluorescence imaging in a syngeneic breast cancer rat model using ProSense and to determine the accuracy of intraoperative tumor detection to obtain an adequate tumor-free resection margin.

MATERIALS AND METHODS

Breast cancer cell line and culture conditions

The MCR86 cell line is a rapidly growing, syngeneic breast cancer cell line derived after subcutaneous transplantation of macroscopic lung tumors, which developed in a female WAG/Rij rat after intravenous inoculation of MCR83 breast cancer cells. Tumor cells were cultured in RPMI 1640 supplemented with 2 mM L-glutamine (Gibco, Invitrogen Ltd, Carlsbad, USA), 10% heat-inactivated fetal calf serum, 100 U/ml penicillin and 0.1 mg/ml streptomycin sulphate.

Breast cancer model and tumor induction

The related EMR86 model is a transplantable, hormone-dependent, metastasizing mammary carcinoma that originated in a female WAG/Rij rat bearing a subcutaneously implanted estrogen pellet and is developed by our research group (Fig. 1a). Tumors are only induced and maintained in rats carrying estrogen pellets, whereas tumors transplanted into non-estrogenized animals do not grow out. Removal of the estrogen pellet induces apoptosis and tumor regression (Fig. 1b). EMR86 tumors are histologically classified as high-grade invasive ductal type adenocarcinomas, with both a cribriform and a solid growth pattern. In large tumors areas, comedo type necrosis can be appreciated. Tumors have a stromal compartment of approximately 30% depending on tumor size (Fig. 1c). EMR86 tumor cells show strong nuclear expression of the estrogen and progesterone receptor in more than 90% of cells, but stain negative for HER2/neu receptor (Fig. 1d-f). Therefore, EMR86 tumors closely resemble the luminal A molecular subtype – the most prevalent subtype of human breast cancer.

For tumor induction, fresh EMR86 tumor fragments of 0.5-1 mm3 were implanted in the mammary fat pad at four sites of female WAG/Rij rats (Charles River, Maastricht, the Netherlands) aging 4-6 months. (A stable cell line from EMR86 tumor has not yet been established successfully, therefore, tumor transplantation is used.) During the same session, an estrogen pellet was implanted subcutaneously in the intrascapular region of the neck. The in-house generated pellets consist of 2 mm
by 3 mm silicone tubes containing 1.5 mg 17 β-estradiol on a 1:3 cholesterol/paraffin basis. Tumor volumes were estimated twice weekly using digital calipers by measuring three orthogonal diameters of the tumor and multiplying this product by π/6. All rats were housed in the animal facility of the Leiden University Medical Center. Pellet food and fresh tap water were provided ad libitum. The weight of the animals was followed throughout the experiment to monitor their general health state. The Animal Welfare Committee of the Leiden University Medical Center approved the study. The study was conducted in concordance with the “Guidelines for the Welfare of Animals in Experimental Neoplasia” (Second Edition, 1997) available online at http://www.ncrn.org.uk/csg/animal_guides_text.pdf.

The commercially available, protease-activatable NIR fluorescence probes ProSense680 and ProSense750 were used (PerkinElmer). The probes consist of a synthetic graft polymer composed of poly-L-lysine that is sterically protected by multiple methoxypolyethylene glycol side chains and to which multiple fluorophores are attached. In this non-activated state, the fluorophores are positioned in close proximity to one another, which results in mutual energy transfer and thus inhibition of fluorescence emission. After enzymatic cleavage of the backbone, the fluorophores
are released and regain their fluorescent characteristics. A number of cysteine proteases are involved in this process. Cathepsin B, and to a lesser degree cathepsin K, L, and S, has been demonstrated to be a major contributor to cleavage and activation of ProSense.19 ProSense680 and ProSense750 have peak absorption of 680 nm and 750 nm, respectively. ProSense680 was selected for intraoperative studies and fluorescence microscopy because of the better matching of the laser of the intraoperative camera system with the peak excitation of ProSense680. ProSense750 was used for cell line experiments and non-invasive animal experiments because of the better spectral separation of autofluorescence signal.

Intraoperative NIR fluorescence camera system

The Fluobeam intraoperative NIR fluorescence camera system (Fluoptics, Grenoble, France) used in this study has been described previously by our group.36,37 Briefly, the system is composed of a class 3B laser (100mW) emitting at 690 nm resulting in an illumination power of 2.6 mW/cm2. Filtered white light (350-650 nm) provides an irradiance of 7x103 lx at the focus level. The emitted fluorescence is collected through a high pass filter (> 700 nm) by a 12 bits CCD camera resulting in a system spatial resolution of 0.17 mm/pixel.

Experimental design

Cell line experiments

For fluorescence measurements, tumor cells were harvested with a solution of 0.25\% (w/v) EDTA and 0.25\% (w/v) trypsin in Hanks’ Buffered Salt Solution (Sigma-Aldrich, St. Louis, USA), washed three times in 0.9% phosphate buffered saline and 200 µL complete medium suspensions were made and transferred on a 96-well acrylate plate (Greiner Bio-one, Alphen aan de Rijn, the Netherlands, #655090; suitable for fluorescence measurements) and kept at 37ºC and 5% CO\textsubscript{2}. At day 2, cells were washed and autoquenched ProSense750 (22.5 to 180 nM, 200 µl) was added. At day 3, cells were washed and 200 µl complete medium was added. Also, time-dependent studies were performed, during which ProSense750 was added at the indicated time-points (8 to 48 h). Fluorescence intensity was measured using the Odyssey NIR fluorescence scanning device (LI-COR Biosciences, Lincoln, USA). Overlying grids were drawn and fluorescence intensity was measured for each well using the Odyssey software (Version 2.1).
Animal experiments

Throughout injection, imaging and surgical procedures, rats were anaesthetized with inhalation of 2% mixture of isoflurane in oxygen. The rats were constantly monitored for the rate of the respiration and depth of anesthesia. Before imaging, rats were shaved to reduce absorption of the optical signal. A total of 20 rats bearing 77 primary mammary tumors varying in size from 0.01 to 1.8 cm³ were used in this study.

In a dose-dependent and time-dependent experiment, tumor-bearing rats (N = 9) were randomly assigned over three ProSense750 dose groups and intravenously injected with 2.5, 5 or 10 nmol ProSense750 (150 µl). Whole-body fluorescence was measured 24 h and 48 h after administration of ProSense750 using the IVIS Spectrum (Caliper LifeSciences, Hopkinton, USA), which allowed separation of the ProSense750 signal from the background fluorescence by means of spectral unmixing. Acquisition settings were kept constant for the different dose groups and on the two consecutive days. Total photon counts per second were measured for each tumor using the Living Image software (Version 3.0, Caliper LifeSciences) and divided by the tumor volume as assessed by digital caliper measurement.

In an intra-operative experiment, tumor-bearing rats (N = 7) were operated under direct fluorescence guidance 24 h after intravenous administration of 10 nmol ProSense680 (150 µl). NIR fluorescence intensity of exposed tumors and surrounding tissues was measured with the Fluobeam intraoperative camera system. Tumor-to-background ratios were calculated by drawing regions of interest at the tumor and at the surrounding tissue by visual interpretation and subsequent measurement of fluorescent intensity using the open-source software ImageJ. Merged visible light and NIR fluorescence light images were created using Adobe Photoshop CS3 Software (Version 10.0.1, Adobe Systems Inc., San Jose, USA). In order to determine sensitivity and specificity of the intraoperative NIR fluorescence technique, an attempt was made to completely remove all tumor tissue while removing as little as possible of the normal surrounding mammary fat pad tissue strictly based on the fluorescence signal in 5 of these 7 rats. Tumors were removed by sharp dissection. Excised tumors were inked with India ink, sliced in two or three parts depending on the size of the tumor and fixed overnight in 4% buffered formalin and embedded in paraffin (FFPE) blocks, mimicking the standard clinical workflow. After resection of the primary tumor, the surgical cavity was inspected with the Fluobeam to detect any remnant fluorescent tissue. After resection of all remnant fluorescent spots, random biopsies were taken of the surgical cavity from every quadrant in order to determine specificity of the technique. In one additional rat an irradical resection was performed intentionally to test the Fluobeam’s ability to detect remnant tumor tissue. All specimens were fixed in formalin as described above. FFPE tumor sections of 4 µm were air-dried and stained with hematoxylin and eosin (H&E). The tumor size, the minimum and maximum
tumor-free margin and the presence of tumor in the random biopsies were determined by an experienced breast pathologist (V.T.H.B.M.S.).

Fluorescence microscopy

Cell line experiments

Time-dependent microscopic analysis of ProSense680 activation by cultured MCR86 cancer cells was performed using the LSM510 Zeiss confocal microscope (Jena, Germany, 40x/0.75w Ph2 ACHROPLAN objective). A 633 nm laser was used for fluorescence excitation and a 650 nm Long Pass for emission. Cells were cultured in 3.5 cm petri dishes incubated with 33.3 nM ProSense680 in 3 ml medium. Cells were kept at 37ºC and imaged for 4.5 hours.

Ex vivo tumor imaging

Freshly excised tumors with a wide rim of surrounding normal mammary tissue of rats injected with 10 nmol ProSense680 (N = 3) were halved. From one half, a 2 mm section was analyzed using the Odyssey scanning device at 21 µm resolution. Tumor border was defined as the outer rim of the tumor and its width was approximately 15% of the tumor diameter. The other half was snap-frozen on dry ice and stored at -80ºC. Unfixed 20 µm sections were measured for fluorescence using the Odyssey scanning device at 21 µm resolution. Processing of sections was performed under reduced light conditions to prevent photobleaching. Subsequently, the tissue sections were stained with H&E. The fluorescence image and the H&E image were merged using Adobe Photoshop enabling detailed analysis of the NIR fluorescence distribution along with the histological context.

Statistical analysis

Statistical analyses and generation of graphs were performed using GraphPad Prism software (Version 5.01, La Jolla, USA). Continuous variables were analyzed using the (paired) t-test for comparison of two groups and one-way analysis of variance (ANOVA) for comparison of more than two groups. To test the effect of two independent variables two-way ANOVA was used. Trend analysis and one-tailed planned comparisons between adjacent groups were conducted. When the assumption of homogeneity of variance was violated (Levene’s test), the Brown-Forsythe F-ratio was reported. Pearson’s correlation coefficients R were calculated for correlation analyses. All statistical tests were two-tailed and $P < 0.050$ was considered significant.
RESULTS

In vitro activation of ProSense by breast cancer rat cell line

The autoquenched NIR fluorescence probe ProSense680 was activated by MCR86 breast cancer cells within two hours. Microscopic analysis revealed an intracellular localization of activated ProSense680 (Fig. 2a-b). Both incubation time ($F(3, 36)=1615, P < 0.0001$) and concentration of ProSense750 ($F(3, 36)=3704, P < 0.0001$) significantly influenced ProSense750 activation as measured by fluorescence intensity (two-way ANOVA, Fig. 2c). Also, there was an interaction between incubation time and ProSense750 concentration ($F(9, 36)=230.4, P < 0.0001$), indicating that the difference in incubation time within ProSense750 concentration groups influenced ProSense750 activation. Furthermore, fluorescence intensity was highly correlated with number of MCR86 cells ($F(4, 10.97) = 39.13, P < 0.0001, R = 0.904$; Fig. 2d).

![Figure 2. In vitro activation of ProSense by syngeneic breast cancer rat cell line: A,B. Fluorescence microscopy (LSM510 Zeiss confocal microscope, 40x objective) of a cluster of MCR86 cells, 1 minute (left panel) and 4.5 h (right panel) after incubation with ProSense680 (33.3 nM). C. ProSense730 concentration and incubation time both significantly influence NIR fluorescence intensity (4.000 MCR86 cells per well, two-way ANOVA, Odyssey scanner). Bars represent mean ± SEM (N = 4). D. NIR fluorescence intensity is positively correlated with number of MCR86 cells (45 nM ProSense750, 24 h incubation, R = 0.890, P < 0.0001, Odyssey scanner). Bars represent mean ± SEM (N = 8).](image-url)
In vivo activation of ProSense by syngeneic rat model of primary breast cancer

EMR86 breast tumors were successfully imaged percutaneously using the IVIS Spectrum after intravenous administration of ProSense750 (Fig. 3a-b). To test the effect of ProSense750 dose and time of imaging on fluorescence intensity, nine rats (N = 35 mammary tumors, mean volume = 0.38 ± 0.36 cm³) were randomly assigned to three ProSense750 dose groups and were imaged 24 h and 48 h post-injection. In concordance with the in vitro data, ProSense750 dose significantly influenced fluorescence intensity (F(2,32) = 3.56, P = 0.04, two-way ANOVA, Fig. 3c). Of note, a substantial part of the tumors could not be identified in the 2.5 nmol dose group (24 h: 4 of 11 tumors, 48 h: 7 of 11 tumors) and the 5 nmol dose group (24 h: 2 of 12 tumors, 48 h: 3 of 12 tumors), whereas in the 10 nmol dose group all tumors were identified. In contrast to the in vitro data, time of imaging did not influence fluorescence intensity (F(2,32) = 2.47, P = 0.13, two-way ANOVA, Fig. 3c). Furthermore, there was no interaction between time of imaging and ProSense750 dose (F(2,32) = 1.06, P = 0.36), indicating that the difference in time of imaging within dose groups did not influence fluorescence intensity. Based on these results, a dose of 10 nmol was selected for further in vivo testing. Imaging 24 h after administration of ProSense was selected for practical purposes. With these settings, fluorescence intensity was significantly correlated with tumor volume (R = 0.934, P < 0.0001; Fig. 3d), which was in concordance with the in vitro data.

Intraoperative NIR fluorescence-guided resection of primary breast cancer

Using the Fluobeam intraoperative camera system, all primary breast tumors (N = 26 tumors, 7 rats) were successfully identified 24 h after intravenous administration of 10 nmol ProSense680 (Fig. 4a). The technique provided a clear demarcation of tumor and surrounding mammary fat pad tissue with a mean tumor-to-background ratio of 2.35 ± 0.37 (paired t-test, t = 14.95, P < 0.0001, Fig. 4b). To determine the accuracy of tumor margin detection of the intraoperative NIR fluorescence technique, 17 tumors (N = 5 rats) were resected completely under direct, real-time NIR fluorescence guidance, while removing as little as possible of the normal surrounding mammary fat pad tissue and processed for histopathological analysis (Fig. 4c). All 17 tumors were completely excised with a mean minimum and a mean maximum tumor-free margin of 0.2 ± 0.2 mm and 1.3 ± 0.6 mm, respectively (Table 1). Mean pathological tumor size was 5.0 ± 2.1 mm. In two cases, after resection of the primary tumor, remnant fluorescent tissue was detected in the surgical cavity with Fluobeam (Table 1). One specimen contained a lymph node with metastatic involvement and the other contained a reactive lymph node with abundant macrophage influx but no tumor involvement. This false-positive finding can be explained by the fact that macrophages show high cathepsin B expression. After resection of all fluorescent spots, random biopsies were taken of
the surgical cavity from every quadrant. None of the random biopsies (N = 64, 5 rats) contained histologically any tumor cells. These results indicate an excellent accuracy of the technique.

In one additional rat, an irradical resection was performed intentionally in order to show the Fluobeam’s ability to detect remnant tumor tissue. Remnant tumor tissue could be detected and subsequently resected under direct NIR fluorescence guidance.

Ex vivo NIR fluorescence microscopy

In order to determine the histological localization of ProSense680, tumors were excised with a wide rim of normal mammary tissue 24 h after intravenous administration of 10 nmol ProSense680 (N = 12 tumors, 3 rats; Fig. 5a). Fluorescence imaging of 2 mm thick, fresh tumor slices revealed that the NIR fluorescence intensity was 1.6 ± 0.3 times higher at the border of the tumor than at its center (paired t-test, $t = 4.99$, $P = 0.0005$, N = 12 tumors; Fig. 5b). In order to obtain more detail about the histological
Table 1. Pathological assessment of inked resection margins after NIR fluorescence guided excision of primary breast cancer

<table>
<thead>
<tr>
<th>Rat</th>
<th>Tumor ID</th>
<th>Maximum ø Specimen (mm)</th>
<th>Maximum ø Tumor (mm)</th>
<th>Radical resection?</th>
<th>Minimum margin (mm)</th>
<th>Maximum margin (mm)</th>
<th>Remnant fluorescence tumor-positive?</th>
<th>Random non-fluorescence biopsies tumor-positive?</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>7.4</td>
<td>3.8</td>
<td>yes</td>
<td><0.1</td>
<td>1.3</td>
<td>0</td>
<td>0/4</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2.8</td>
<td>0.8</td>
<td>yes</td>
<td><0.1</td>
<td>0.9</td>
<td>1/1a</td>
<td>0/4</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>8.8</td>
<td>4.8</td>
<td>yes</td>
<td>0.7</td>
<td>2.4</td>
<td>0</td>
<td>0/3</td>
</tr>
<tr>
<td>B</td>
<td>4</td>
<td>7.5</td>
<td>5.1</td>
<td>yes</td>
<td><0.1</td>
<td>1.4</td>
<td>0</td>
<td>0/4</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>4.9</td>
<td>3.1</td>
<td>yes</td>
<td><0.1</td>
<td>1.0</td>
<td>0</td>
<td>0/4</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>5.4</td>
<td>4.2</td>
<td>yes</td>
<td>0.1</td>
<td>1.0</td>
<td>0</td>
<td>0/4</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>9.2</td>
<td>8.0</td>
<td>yes</td>
<td><0.1</td>
<td>1.0</td>
<td>0</td>
<td>0/4</td>
</tr>
<tr>
<td>C</td>
<td>8</td>
<td>9.1</td>
<td>7.9</td>
<td>yes</td>
<td><0.1</td>
<td>1.1</td>
<td>0</td>
<td>0/4</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>8.9</td>
<td>5.7</td>
<td>yes</td>
<td>0.2</td>
<td>2.5</td>
<td>0</td>
<td>0/4</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>9.7</td>
<td>7.7</td>
<td>yes</td>
<td><0.1</td>
<td>1.8</td>
<td>0</td>
<td>0/4</td>
</tr>
<tr>
<td>D</td>
<td>11</td>
<td>5.3</td>
<td>2.4</td>
<td>yes</td>
<td>0.4</td>
<td>1.6</td>
<td>0</td>
<td>0/3</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>6.1</td>
<td>4.3</td>
<td>yes</td>
<td>0.2</td>
<td>1.0</td>
<td>0</td>
<td>0/4</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>5.7</td>
<td>4.4</td>
<td>yes</td>
<td>0.2</td>
<td>1.5</td>
<td>0</td>
<td>0/4</td>
</tr>
<tr>
<td>E</td>
<td>14</td>
<td>8.2</td>
<td>6.9</td>
<td>yes</td>
<td><0.1</td>
<td>0.8</td>
<td>0</td>
<td>0/4</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>8.3</td>
<td>7.3</td>
<td>yes</td>
<td><0.1</td>
<td>0.6</td>
<td>0</td>
<td>0/4</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>7.3</td>
<td>5.6</td>
<td>yes</td>
<td>0.3</td>
<td>0.7</td>
<td>0</td>
<td>0/4</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>6.6</td>
<td>3.0</td>
<td>yes</td>
<td><0.1</td>
<td>1.9</td>
<td>0/1b</td>
<td>0/4</td>
</tr>
</tbody>
</table>

Mean ± SD 7.1 ± 1.9 5.0 ± 2.1 0.2 ± 0.2 1.3 ± 0.6 1/2 0/64

*a Macrometastasis in lymph node
*b Reactive lymph node with abundant macrophage influx
Preclinical intraoperative imaging of breast cancer localization of ProSense680, unfixed 20 µm frozen tissue sections were measured for fluorescence using the Odyssey and subsequently stained with H&E (Fig. 5c). These results showed that NIR fluorescence is mainly located in the stromal compartment of the breast tumors and in particular at the tumor border.

DISCUSSION

In the current study, we demonstrated the feasibility of real-time intraoperative NIR fluorescence identification of breast tumors in a syngeneic orthotopic breast cancer rat model using the protease-activatable probe ProSense. In both the cell line and animal experiments, fluorescence intensity was strongly correlated with number of tumor cells, tumor size and ProSense dose. In contrast to the *in vitro* data, time of imaging (24 h vs. 48 h after administration of ProSense) did not significantly influence fluorescence intensity of breast tumors. This is likely a result of the relatively long blood half-life of ProSense (half-life in mice 18 h, PerkinElmer website) and may provide flexible operation planning in future clinical applications. Histological analysis demonstrated
that NIR fluorescence intensity of tumors was highest at the invasive tumor border. Resection of tumors under real-time NIR fluorescence guidance showed excellent accuracy of the technique in the intraoperative detection of tumor margins. These results suggest that clinical introduction of intraoperative NIR fluorescence imaging using a protease-activatable probe such as ProSense has the potential to increase the number of complete tumor resections in breast cancer patients undergoing breast-conserving surgery.

Previous studies in which NIR fluorescent and protease-activatable probes were tested have utilized xenograft or transgenic mouse models. A limitation of many animal models of breast cancer is that, compared to the human situation, less normal mammary tissue is present in relation to tumor size. Therefore, these tumors are easily resected by removing all breast tissue. However, this approach does not resemble the principles underlying breast-conserving surgery. This study was performed using an orthotopic breast cancer model that is syngeneic to immunocompetent female WAG/Rij rats. In syngeneic models, tumors are grown in homologous species and in the strain in which the tumor has originated. Therefore, these models are more representative of the natural tumor-host interaction. Although no preclinical tumor model will contain all features of the complex biology of human cancer, this syngeneic model has several strengths, including its hormone-sensitivity, cribriform growth pattern and its ability to induce regression by estrogen pellet removal. Moreover, this model captures several important features of luminal A hormone-dependent, HER2/neu negative human breast cancer, which is the most predominant subtype of breast cancer. Another intrinsic limitation of animal models of surgical interventions is the potential occurrence of performance bias, because researchers carrying out the intervention can not be blinded to the allocated treatment. This form of bias may lead to flawed results. To surpass these limitations in our study, a one-arm study design was chosen using small breast tumors (5.0 ± 2.1 mm). Tumors were excised based on the NIR fluorescence signal and examined by a breast pathologist using standard clinical methodology. Using this approach, all tumors were completely resected with a mean maximum tumor-free resection margin of 1.3 ± 0.6 mm, indicating that a minimal amount of normal mammary tissue was resected. Although syngeneic models provide a relevant tumor-host interaction, their major drawback is that the tumor cells are rodent, and therefore express the rodent homologues of the desired targets. However, the main target of ProSense, the cysteine protease family (most particular cathepsin B) is strongly conserved amongst mammals. Upregulation of cathepsin B has been confirmed extensively in human breast cancer. It is therefore expected that this kind of protease-activated NIR fluorescence probes will be applicable for intraoperative NIR fluorescence imaging in a large proportion of breast cancer patients.

Analysis of the histological localization of activated ProSense demonstrated that the invasive tumor border exhibited the most intense NIR fluorescence signal.
This observation is in concordance with immunohistological analysis of cathepsin B reported by others14,24 and is in line with the pathophysiological role of cathepsins as reviewed by Gocheva.42 Cathepsins promote tumor invasion through several possible mechanisms. First, they can directly cleave components of the extracellular matrix and basement membrane, essentially clearing a path for the migration of tumor cells away from the primary tumor. Second, at the cell membrane, cathepsins can direct a proteolytic cascade in which they activate other proteases such as matrix metalloproteinases and urokinase plasminogen activator, which in turn promotes tumor invasion. Third, cleavage of the cell adhesion protein, E-cadherin, at the cell surface can disrupt adherens junctions and thus facilitate cancer cell migration and invasion.42 Apart from tumor border, NIR fluorescence was higher in the stromal compartment of the tumors. This finding is in concordance with Gounaris et al., who demonstrated that CD11+ tumor-infiltrating macrophages accounted for 75% of the
ProSense signal at FACS analysis.29 In summary, as complete resection of breast tumors requires adequate visualization of tumor margins, the increased activity of proteolytic enzymes at the invasive tumor border provides an excellent target for intraoperative NIR fluorescence-guided surgery.

Future clinical studies will have to provide proof-of-principle of intraoperative NIR fluorescence tumor detection. Currently, a number of intraoperative NIR fluorescence imaging systems are clinically available and have already been used for sentinel lymph node mapping.43-45 It is expected that several tumor-targeting NIR fluorescent probes (such as ProSense) will receive regulatory approval within the next few years.

A therapeutic challenge of any new breast cancer imaging technology is the detection of occult tumor deposits in the breast. These tumor deposits could influence surgical decision making, but do not necessarily have a prognostic relevance, because in the vast majority of cases postoperative radiation will eradicate these microscopic deposits. For instance, in preoperative MR imaging, the identification of additional tumor deposits is two to three times higher than the incidence of local recurrence, resulting in mastectomies that may not be beneficial to the patient.46 Consequently, detection of tumor at the margins would be beneficial, detection of tumor deposits beyond the margins, below the cut edge of the lumpectomy cavity, could have the potential to increase surgical resection volume (or even mastectomy rates) without a benefit in survival. Since the maximum penetration depth for NIR fluorescence imaging is currently around 1 cm,47 it is unlikely that intraoperative NIR fluorescence imaging will detect occult lesions at several centimeters distance from the primary tumor.

Sensitivity of NIR fluorescence is mostly dependent on photon absorption of the tissue, fluorescence excitation power of the light source and concentration of the NIR fluorophore in tissue. Required camera exposure times are inversely correlated with the amount of fluorescence signal. In the current study, camera exposure times of 2-20 ms were used. The field-of-view of the Fluobeam camera system is 7 cm of diameter. Therefore, the time needed to evaluate tumor margins and excision cavities is at most several seconds. Consequently, this real-time intraoperative technique is unlikely to prolong surgical time significantly.

In conclusion, this study provides preclinical validation of an innovative technique in which NIR fluorescence light is used to visualize breast tumors and to provide real-time guidance during subsequent resection. Clinical translation of these results might be very promising because of high accuracy of the technique, flexible surgical planning, increased proteolytic activity at the tumor border and upregulation of cathepsin B in a large proportion of breast cancer patients. Therefore, this study warrants clinical validation of this technique, once NIR fluorescence probes become
available for clinical testing, with the ultimate goal to increase the radical resection rate of patients undergoing breast-conserving surgery.

ACKNOWLEDGEMENTS

We want to thank Rob Keyzer and Anita Sajet for technical assistance and Fluoptics (Grenoble, France) for use of the Fluobeam® system. J.S.D. Mieog is a MD-medical research trainee funded by The Netherlands Organisation for Health Research and Development (grant nr. 92003526).
REFERENCES

Preclinical intraoperative imaging of breast cancer

