
CHAPTER 2

Characterisation of a spontaneous parametric

down-conversion source for spatially-entangled photon

pairs

2.1 Introduction

Spontaneous parametric down-conversion (SPDC), in the older literature frequently referred
to as parametric �uorescence or parametric scattering [72–74], is a second-order nonlinear op-
tical process in which a high-frequency photon spontaneously splits in two lower-frequency
photons, such that energy is conserved. It is thereby the inverse process of the more widely
known up-conversion processes of second-harmonic generation (SHG) and sum-frequency
generation (SFG), where two low-frequency beams are nonlinearly mixed to produce one
high-frequency component [75, 76].

�e process of SPDC has found common application in various �elds of research. In the
past, it has been used as a tool to measure the second-order nonlinear optical susceptibility
tensor for a variety of materials [77–79]. An advantage of this method over more common
methods based on SHG and SFG [80], lies in the fact that in SPDC the conversion e�ciency is
independent of the pump power, hence obviating the need for detailed knowledge of the pump
beam’s characteristics. SPDC is also the initiating process in optical parametric oscillators, as it
generates the seed photons from which the coherent output builds up via parametric ampli�-
cation [74, 81]. Owing to their large frequency tuning range, parametric oscillators are popular
sources of tunable, narrowband light in a variety of �elds, ranging from coherent anti-Stokes
Raman spectroscopy [82] to continuous-variable quantum optics [83]. In recent years, SPDC
has made its mark on the �elds of quantum optics and quantum information, as a source of
quantum states of light. In particular, it has become a standard instrument for the production
of entangled photons [84–86], paving the way for such applications as quantum cryptography,
quantum teleportation, quantum imaging, etc. [9, 11]. To date, SPDC remains an unparalleled
source of entangled photon pairs in terms of brightness, reliability, and universality.
For the experimental work presented in this thesis, we exploit the process of SPDC for the

creation of orbital-angular-momentum (OAM) entangled photon pairs. �e e�ciency of the
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Figure 2.1: Representation of the pump, signal, and idler wave vectors in SPDC.�e down-converted
signal and idler wave vectors ks and ki point away from the pump wave vector kp in such a way that
transverse momentum is conserved. �e longitudinal mismatch is denoted as ∆kz .

conversion process depends, amongst others, strongly on the wave-vector mismatch ∆k be-
tween the pump and down-converted photons travelling through the nonlinear medium. �is
sensitivity on themismatch sets limits to the spatial distribution in which the down-converted
light is emitted. Consequently, when studying spatial (quantum) correlations between the pho-
tons in a pair, it is important to have a full understanding of the spatial structure of the SPDC
source, and the dependence thereof on phase matching.
In the present Chapter, we present the results of an experimental characterisation of our

SPDC source. We study the spatial structure of the down-converted light by imaging the far
�eld of the light emitted from the nonlinear crystal and investigate the dependence of the emis-
sion on phase matching. �e experimental data are used to estimate the number of entangled
modes emitted by our source, characterised by the Schmidt number [50, 87]. �is number
serves as a benchmark for the work in the ensuing Chapters of this thesis, substantiating some
useful assumptions we make regarding the spatial structure of the entanglement.

2.2 Phase matching

�e process of SPDC does not exchange energy with the nonlinear crystal, and, consequently,
the energy of a pump photon ħωp reappears as the sum of the energies of the two generated
photons:

ωp = ωs + ω i . (2.1)

Here, ωs and ω i refer to the frequencies of the generated photons, traditionally named signal
(s) for the high-frequency photon and idler (i) for the low-frequency partner.
In the limit that the transverse cross section of the nonlinear crystal is much larger than

that of the pump beam, the setup is invariant to translations in the plane of the crystal. Con-
sequently, the transverse component of the wave vector has to be conserved. �is implies that
the signal and idler photons in a pair have equal but opposite transverse wave vectors. Because
of the �nite length of the crystal, the longitudinal component of the wave vector does not need
to be conserved; the ensuing wave-vectormismatch between the pump, idler, and signal waves
is given by (see Fig. 2.1)

∆k = ∆kz = kp ,z − ks ,z − k i ,z . (2.2)

Here, k j = 2πn j/λ j , with n j the (wavelength-dependent) refractive index of the nonlinear
medium and λ j the wavelength of the light.

�e e�ciency of any nonlinear optical process depends strongly on this wave-vector mis-
match. �e emission is brightest if the various �elds are coherent over the full length of the
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crystal. For that reason, nonlinear optical processes are preferably operated under phase-
matched conditions, viz., ∆k ≃ 0.
Dispersion in the nonlinear material between pump, signal, and idler waves hereby plays

an inhibiting role and should be eliminated. �is can be achieved with the use of birefringent
nonlinear crystals. In such crystals perfect phase matching can be attained by appropriately
orienting the crystal axes, and the wave vectors and polarization vectors of the input �elds.
However, it is o�en the case that the strongest nonlinearities cannot be addressed in this man-
ner. Consequently, considerable e�ort has been devoted to develop materials that combine
perfect phase matching with a strong nonlinear response, resulting in a multitude of quasi-
phase-matched and periodically-poled materials [88, 89].
In up-conversion processes such as SHG and SFG, the concept of phase matching has a

clear experimental signi�cance: it simply determines the net power of the up-converted beam.
�is is due to the fact that the two �xed input waves impose quite a stringent condition on the
frequency and directionality of the generated harmonic. When perfect phase matching is not
met, the emitted radiation is much weaker and modulates rapidly as a function of the phase
mismatch. �is behaviour was �rst reported by Maker et al., who investigated SHG from a
crystalline quartz sample [90]. Although quartz does not allow for perfect phase matching,
they observed a weak second-harmonic signal that varied in power with the orientation of the
crystal, i.e., with ∆k. Nowadays, this modulation goes by the name of “Maker fringes” [91, 92].
In SPDC, the system has more freedom to obey the phase-matching condition, and a

change of the crystal orientation does not necessarily lead to an increase or decrease in the
radiated power. Rather, it may result in a directional and/or frequency redistribution of the
emitted radiation, since Eqs. (2.1) and (2.2) together allow for a certain freedom in the fre-
quencies and directionalities of the generated photons. �is �exibility lies at the heart of the
wide tuning range of parametric oscillators. Nevertheless, power variations equivalent to those
encountered in SHG and SFG appear when the output power is measured within a narrow
spectral bandwidth and within a well-de�ned range of wave vectors, that is, if one is selective
regarding the frequency-mode and spatial-mode structure of the SPDC light.
Let us study the spatial structure of the SPDC emission in closer detail. In a plane-wave

description, the down-converted �eld emanating from a non-linear crystal of length L is of
the general form

E ∝ ∫
L

0
e i∆kz zdz ∝

sin( 12∆kzL)
1
2∆kzL

L. (2.3)

�is function is strongly peaked around ∆kz = 0, corresponding to perfect phase matching.
To �nd the exact spatial distribution of this phase-matched emission, we should take into

account the polarization dependence of the problem. Phase matching in SPDC can usually
be accomplished in two con�gurations, known as Type-I and Type-II phase matching. In the
latter case, the polarization of the generated signal and idler waves are mutually orthogonal,
causing them to experience di�erent refractive indices inside the birefringent nonlinear crys-
tal. Consequently, signal and idler emerge in di�erent directions, in the form of two cones
that can be tuned to intersect. Examples of such Type-II rings have appeared on the cover of
various books andmagazines [11] in the wake of advances in quantum information processing.
By selecting light from the intersections of the rings, this con�guration serves as a source of
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polarization entangled photon pairs [86]. In our pursuit to createOAM-entangled photons, on
the contrary, we have chosen to use Type-I phase matching. In this con�guration, signal and
idler photons have the same polarization and emerge in a single cone coaxial with the pump
beam axis. �e aperture of the cone can be widened or shrunk by tuning the phase-matching.
Of particular interest is the situation that the cone is contracted to the point that the emission
is beam-like. �is relieves the need of apertures and the accompanying truncation of spatial
modes.
Equation (2.3) shows that the strength of the generated �eld is proportional to the crystal

length L, while the width of the phase-matched cone is inversely proportional to L. Away
from perfect phase matching, emission is fully inhibited whenever ∆kzL equals a multiple of
2π, but revives weakly in between these nodes. �ese fringes constitute the SPDC analogy of
Maker’s observation; they have a spatial character and appear as rings around the perfectly
phase-matched emission cone, somewhat reminiscent of an Airy di�raction pattern.
In the following Section, we will present experimental data of the spatial structure of the

SPDC emission from a Type-I source.

2.3 Experimental results

In our experiment, we use a BBO crystal (β-barium borate, β-BaB2O4) that allows for Type-I
phase matching by angle tuning of the crystal. Figure 2.2 shows a diagram of our experimental
setup. �e crystal of length 1 mm is pumped by a weakly focused (waist w0 = 250 µm) Kr+
laser beam of 100 mW power at a wavelength of λ = 413 nm. �e pump beam is polarised
along the extraordinary crystal axis, whereas the signal and idler beams are polarised along
the ordinary axis. �e phase mismatch can then be written as

∆kz = 2π [
ne(λp , Θ)

λp
−
no(λ i)

λ i
−
no(λs)

λs
] , (2.4)

where the subscripts (o, e) denote the ordinary and extraordinary crystal axes, respectively.
�e extraordinary refractive index ne depends on the tuning angle Θ between the direction
of propagation and the optical axis of the crystal. �e e�ective nonlinearity of BBO cut for
Type-I collinear phase matching (Θ = 28.3○) equals deff = 1.9 × 10−12 m/V [93]. Given the 1
mm crystal length, the total yield of the resulting down-converted light is only of the order
of 104 photon pairs per second per spatial mode per nm bandwidth. �is feeble signal must
be �ltered from the 100 mW pump beam (≃ 1017 photons per second), which is achieved by
means of a blue laser mirror that re�ects the pump beam. Additionally, an interference �lter,
centred around 826 nmwith a 20 nmwidth, suppresses residual stray (pump) light and ensures
that we detect only degenerate photon pairs with λ i ≃ λs . We use an intensi�ed CCD camera
(Princeton PI-MAX) that is positioned in the Fourier plane of the crystal to detect the SPDC
light. �is far-�eld con�guration enables us to characterise the angular emission pro�le of the
degenerate down-converted light.
Wewill work close to the point where ∆kz = 0 and, furthermore, close to collinearity where

signal and idler point in the same direction as the pump beam. Because λ i ≃ λs ≃ 2λp , the
phase mismatch can be approximated by

∆kz ≃ ∣kp ∣ − ∣ki ∣ − ∣ks ∣ + 1
2 (∣ki ∣ + ∣ks ∣)ζ2 , (2.5)
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Figure 2.2: Experimental Setup. A 100 mW laser beam pumps a 1 mm nonlinear BBO crystal, cut for
Type-I phase matching, at 413 nm. �e pump beam is removed from the down-converted light by means
of a blue lasermirror. A 826±10 nm interference �lter selects frequency-degenerate SPDC light (λ i ≃ λs),
and the far-�eld emission pro�le is recorded by means of an intensi�ed CCD camera.

where ζ is the angle between kp and either ki or ks inside the crystal. Note that in the case of
exact degeneracy and collinearity, only the term depending on ζ survives.
We have recorded far-�eld spatial distributions of the down-converted light for various

tuning angles of the crystal. Figures 2.3(a)-(c) give three examples for di�erent phase match-
ing conditions (see below). �ese intensity pro�les are plotted on a logarithmic false-colour
scale in order to increase the visual contrast. We observe patterns of concentric rings of dimin-
ishing intensity. �e bright ring stems from emission that obeys the phase matching condition
∆kz = 0. As discussed in the previous Section, the emission cone can be opened (see Fig.
2.3(a)) or closed (see Fig. 2.3(b)), depending on the tuning angle of the nonlinear crystal. In
Fig. 2.3(c), the phase-matched ring has shrunk to a single spot, corresponding to collinear
phase matching. Tilting the crystal even further will take it beyond perfect phase matching,
and bright emission will no longer be possible. �e fainter rings on the inside and outside of
the phase-matched emission ring represent the subsidiary maxima of Eq. (2.3) and manifest a
spatial variant of Maker’s fringes. As the intensity drops rapidly with increasing wave-vector
mismatch, at most two higher-order SPDC rings can be observed, given the background noise
level. Although - with a little imagination - a hint of non-phase-matched emission rings may
be discerned in observations from Refs. [94, 95], their appearance hasn’t been discussed else-
where. In the footsteps of the work discussed here, a high-quality spatial analysis of SPDC
emissionwas presented in Ref. [96], using a 600 times brighter periodically-poledKTP (Potas-
sium Titanyl Phosphate) source.
Let us compare our experimental results to the �eld distribution described by Eq. (2.3).

Using Eq. (2.5), the intensity pro�le can be written as

I ∝ ∣E∣2 ∝ [
sin(φ + cξ2)

φ + cξ2
]

2

, (2.6)

where the variable ξ is the external emission angle in air, given by ξ2 = (nζ)2 = ξ2x + ξ2y .
�e factor c = (∣ks ∣ + ∣ki ∣)L/(2n)2 is a constant, equal to c = 2.29 × 103 for our experimental
parameters (crystal length 1 mm and refractive index n = 1.66 for both signal and idler). �e
parameter φ = (∣kp ∣ − ∣ks ∣ − ∣ki ∣)L/2 determines the opening angle of the emission cone, i.e., it
is a measure of the non-collinearity of the process. �e radius of the perfectly phase-matched
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Figure 2.3: Experimental emission pro�les of our Type-I SPDC source. (a)-(c) Narrow-band far-�eld
spatial pro�les around λ = 826 nm for various values of the phase-matching (see text), plotted on a
logarithmic scale. (d)-(f)�eir respective cross sections (black curves) were azimuthally averaged and
�t to Eq. 2.6 (red curves). Graphs (c) and (f) correspond to collinear alignment.
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SPDC ring in the Fourier plane is given by ξR =
√
−φ/c. �e phase-matched cone is open for

φ < 0, with collinearity occurring at φ = 0. For φ > 0 perfect phase matching is no longer
possible.
Figures 2.3(d)-(f) show the cross sections (solid curves) of Figs. 2.3(a)-(c), respectively.

�ese cross sections, obtained a�er careful determination of the pro�le centres, were az-
imuthally averaged and normalized to maximum intensity. �e dashed curves represent the
theoretical prescription from Eq. (2.6), where only the “non-collinearity” φ was le� as a �tting
parameter. From these �ts, we found φ = −6.90 rad and φ = −1.40 rad for Fig. 2.3(d) and
2.3(e), respectively. For Fig. 2.3(f) we obtained φ = −0.05 rad, in correspondence with the
statement that φ → 0 at collinearity. Similar results were obtained when leaving c as a second
�tting parameter.

2.4 Estimate of the number of spatially entangled modes

�e intensity measurements in Fig. 2.3 of the parametric �uorescence from the nonlinear
crystal are in itself classical. Between the signal and idler photons, however, exist spatial cor-
relations that are essentially of quantum nature. �is has been con�rmed and exploited in
numerous experiments [40, 44, 47, 97], and here, we will adopt a quantum description of the
emission without further justi�cation.
As argued in Section 2.2, signal and idler photons in a pair have equal but opposite trans-

verse momenta. Both signal and idler photons are individually in a superposition of spatial
modes, in such a way that their composite state is pure and entangled. In view of our work in
the coming Chapters, we will write this entangled state in a cylindrical basis, namely [33, 34],

∣Ψ⟩ = ∑
m ,p

cmp ∣m, p⟩A∣ −m, p⟩B . (2.7)

Here, ∣m, p⟩A (∣m, p⟩B) represents a signal (idler) spatial mode containing one photon, with
p ≥ 0 a radial and m = −∞, . . . ,∞ an azimuthal integer mode index. �e entangled state of
Eq. (2.7) is represented in its diagonalised Schmidt decomposition, meaning that it is written
as a sum over biorthogonal product states (and the modes of photons A and B thus carry the
same indices m and p) [98]. �e complex expansion coe�cients cmp obey the normalization
requirement∑m ,p ∣cmp ∣

2 = 1.
In general, it is not a trivial task to �nd the mode functions fm ,p(r) = ⟨r∣m, p⟩ for down-

conversion systems as those described in Section 2.2. Approaches to do so can be found in
Refs. [33, 87, 99]. Due to the cylindrical symmetry in Type-I phase matching, however, the
azimuthal content is readily obtained; the eigenmodes of rotation around the symmetry axis
are of the form e imθ , and thus fm ,p(r) = fm ,p(r)e imθ , with θ the azimuthal angle. Modes
of this form are also eigenmodes of the OAM operator L̂z = −i∂/∂θ [100], and ∣m, p⟩ thus
represents a spatial mode containing one photon with OAM mħ. Note that conservation of
OAM (mA = −mB) was already incorporated in Eq. (2.7).

�e coming Chapters will predominantly deal with angular entanglement. Hence, we are
particularly interested in the azimuthal m-content of the state. Let us therefore inspect the
angular modal spectrum of Eq. (2.7), also known as the spiral bandwidth [33, 35]. �is quantity
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Figure 2.4: Azimuthal probability distribution of the generated state. Spiral content Pm = ∑p ∣cmp ∣
2

of the Schmidt decomposition (see Eq. (2.7)), calculated for our system. We assumed collinear phase
matching and used the experimental parameters as given in Section 2.3.

gives the OAM probability distribution Pm , obtained by summing over the radial part,

Pm = ∑
p
∣cmp ∣

2 . (2.8)

Figure 2.4 shows the spiral bandwidth of our source, calculated for collinear phase matching
and the experimental values for the pump beam waist w0 and the crystal length L mentioned
in Section 2.3 [35]. We observe a broad spectrum that is symmetric around m = 0, which is a
consequence of the fact that our Gaussian pump has m = 0. �e histogram has a considerable
width with long tails extending to high m numbers. Obviously, however, the modes in the
superposition carry unequal weights.
In principle, the number of entangled modes in Eq. (2.7) can be in�nite. However, it is

natural to take the relative weight of the modes into account and to de�ne an e�ective number
of entangled modes. �is is done by the so-called Schmidt number, given by [50, 87]

K =
1

∑m ,p ∣cmp ∣4
, (2.9)

For the case that one is only interested in the azimuthalm-content (i.e., the spiral bandwidth)
of the state, it can be derived that [34]

Kaz =
1

∑m P2m
≃ 2

√
K . (2.10)

�e Schmidt number is commonly used as a meaningful quanti�er of (high-dimensional) en-
tanglement [87].
In principle, if one manages to construct the Schmidt basis {∣m, p⟩}, the Schmidt decom-

position as given inEq. (2.7) allows to calculateK theoretically, provided one computes enough
terms in the expansion. However, in many cases this is not so easy. Moreover, this procedure
does not provide a clear way to determine K experimentally. To this end, Refs. [87] and [101]
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presented two independent methods to measure the Schmidt number experimentally. In the
following, we use these methods to estimate the Schmidt number for our experimental con-
�guration.
In Ref. [87], Law and Eberly provided an approximation in terms of the ratio of the far-�eld

beam widths σpump and σSPDC of the pump and SPDC emission, respectively,

K ≃
1
4
(

σpump

σSPDC
+

σSPDC

σpump
)

2

, (2.11)

where σpump = 2/w0 and σSPDC =
√
4kp/L. Implicit to this result are the assumption of

collinear phase matching and the approximation of Eq. (2.6) by a Gaussian of width σSPDC .
Equation (2.11) constitutes in fact a lower limit to K [87]. Filling in the relevant experimental
numbers for the pump beamwaist, wave number, and crystal length, we arrive at K = 395 (and
Kaz = 40). Evidently, the widths σpump and σSPDC can also be estimated experimentally. In
Fig. 2.5 we reproduced the far-�eld intensity pro�le of the source for nearly collinear phase-
matching. �e inset shows the Gaussian pro�le of the pump beam in the same plane.* �e
scale of the inset is magni�ed by a factor of �ve compared to the main graph. We observe
that the pump beam is much more compact than the generated SPDC light. We made a rough
estimate of the angular widths by simply taking the full width at half maximum and arrived
at σSPDC = 48 mrad and σpump = 1.2 mrad. Equation (2.11) thus yields K = 385 (Kaz = 39), in
good agreement with the calculation presented above. As stated earlier, this result based on
Eq. (2.11) constitutes a lower boundary to the Schmidt number.
Recently, a more accurate method to measure the Schmidt number was demonstrated in

Ref. [101]. Using concepts from classical coherence theory, this method takes into account the
detailed spatial structure of the two-photon �eld. It yields the Schmidt number in terms of the
spatial degree of coherence of �eld,

K ≃
1

λ2
[∫ INF(r)dr]2

∫ I2NF(r)dr
[∫ IFF(ξ)dξ]2

∫ I2FF(ξ)dξ
(2.12)

where INF(r) and IFF(ξ) are the spatial intensity pro�les of the down-converted light mea-
sured in the near �eld and far �eld of the nonlinear crystal, respectively. In the near �eld, the
SPDC pro�le simply adopts the Gaussian pro�le of the pump beam (see inset Fig. 2.5). In
the far �eld, the pro�le shows the concentric structure as presented in Fig. 2.5. Based on the
theoretical descriptions for the near �eld and far �eld (see Eq. (2.6)), we calculate the Schmidt
number to be K = 930. Using the experimental data from Fig. 2.5, we obtain an experimental
value of K = 850, probably being a slight underestimate due to the noise �oor of the measure-
ment.
In summary, the calculated Schmidt number based on Eq. (2.12) is con�rmed by our ex-

periment. Moreover, this result is consistent with the lower bound according to Eq. (2.11).

*

For experimental convenience, in reality we did not use the bright pump beam itself for this purpose, but an auxiliary
beam that was mode matched to it to a very high degree.
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Figure 2.5: Experimental determination of the Schmidt number. Narrow-band far-�eld intensity pro-
�le of the SPDC light for collinear phase matching, reprinted from Fig. 2.3(c). �e circle indicates the
full-width-at-half-maximum intensity level of the central spot. Inset: size of the Gaussian pump beam in
the same plane, plotted with �ve times magni�cation for comparison. A rough estimate of the Schmidt
number is obtained by taking the ratios of the two beam sizes (see Eq. (2.11)), yielding K = 385. A more
careful analysis based on Eq. (2.12) yields K = 850.

2.5 Conclusions

We have characterised the parametric �uorescence from a Type-I SPDC source, which we will
employ in the coming Chapters to create OAM-entangled photon pairs. �e emission pro�les
were spatially analysed, and the in�uence of phase matching on the emission cone aperture
was studied. Apart from dominant phase-matched emission, we observed secondary non-
phase-matched emission rings, which are a spatial analogy of the well-known Maker fringes
exhibited in second-harmonic generation and sum-frequency generation.
Furthermore, we computed the spiral bandwidth of the OAM-entangled modes and esti-

mated the Schmidt number of the generated two-photon �eld to be 850. �e corresponding
azimuthal Schmidt number is approximately equal to 60, a number that is su�ciently large for
the purpose of our experiments.
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