Chapter 7

Male-only fresh frozen plasma for TRALI prevention

Before-and-after comparative cohort study

Johanna C. Wiersum-Osselton
Rutger A. Middelburg
Erik A.M. Beckers
Anita J.W. van Tilborgh
Pauline Y. Zijlker-Jansen
Anneke Brand
Johanna G. van der Bom
Martin R. Schipperus

Transfusion 2010; In press
Abstract

Background
TRALI is one of the most serious complications of blood transfusion. It can be caused by incompatible leukocyte antibodies in transfused plasma. The objective of this study was to quantify the reduction of TRALI following introduction of male-only plasma for transfusion as a preventive measure, which took effect in 2007.

Study design and methods
In the Netherlands all cases of TRALI are reported to the national haemovigilance office. All reported cases of TRALI from 2002 to November 2009 were considered for inclusion. Those meeting the Canadian consensus clinical definition were included and subdivided according to whether or not the patient had received quarantine FFP (Q-FFP) in the six-hour period before the reaction. The numbers of TRALI cases involving plasma donated before the measure and of those involving plasma donated after the measure were compared to TRALI cases that did not involve Q-FFP in order to adjust for reporting bias.

Results
110 cases were included in the analysis. Of 68 cases before the measure, 36 involved Q-FFP. 31 cases occurred after the measure of which 8 involved Q-FFP. Eleven occurred in the transitional period, of which 4 involved Q-FFP. The population attributable risk of pre-measure plasma among TRALI cases occurring before the measure was 0.33 (95% CI: 0.09 to 0.51).

Conclusion
In the Netherlands the male-only Q-FFP measure was associated with a 33 percent reduction of TRALI cases.
Male-only plasma and TRALI prevention

Introduction

Transfusion-related acute lung injury (TRALI) is one of the most serious transfusion reactions and one of the top three causes of transfusion-related mortality in most haemovigilance registries. According to the Canadian consensus criteria, respiratory distress, hypoxia, increased airway resistance and frothy sputum in ventilated patients arise within six hours of transfusion and are associated with (new) infiltrates showing on X-ray. This is assumed to be due to neutrophils entering the pulmonary interstitium and fluid loss into the alveoli. TRALI has been attributed to incompatibility between donor leukocyte antibodies (HLA class I and II antibodies as well as anti-granulocyte antibodies) in transfused plasma and recipient leukocytes. However, in many cases no leukocyte incompatibility is found. In the postulated two-hit mechanism of TRALI, a first hit consists of neutrophil priming or initial triggering of endothelium in the pulmonary vascular bed. The second hit can be the transfusion of leukocyte antibodies incompatible with the recipient or other factors that arise during storage of blood products.

The proportion of TRALI cases which are deemed to be caused by leukocyte incompatibility has been estimated at up to 89%. Leukocyte antibodies are mainly induced by pregnancy or blood transfusion. Therefore several countries where fresh frozen plasma (FFP) is used for transfusion have introduced FFP preferentially or exclusively derived from male donors who have never received a blood transfusion with the aim to reduce the number of TRALI cases. In the UK, analysis of ten years of TRALI registration within “SHOT” (Serious Hazards of Transfusion) the national haemovigilance office shows that implementation of preferential male-only FFP has led to a near-disappearance of TRALI associated with leukocyte incompatibility following plasma transfusion. However this may be partly a consequence of the SHOT method of assessing “imputability”, the likelihood that the clinical picture of TRALI is related to transfusion. SHOT grades imputability of TRALI reports higher in the presence of patient-incompatible leukocyte antibodies. The international consensus definition for TRALI does not include leukocyte incompatibility as a criterion.

The male-only measure became effective in The Netherlands for all quarantine plasma (Q-FFP; henceforth in this article we will refer simply to “plasma”) distributed to hospitals since 1st July 2007. The aim of the present study was to quantify the reduction of TRALI cases, as defined by the international consensus definition, following implementation of male-only plasma.
Design and Methods

Design and study setting
We performed a cohort study among all patients who had a diagnosis of TRALI in the Netherlands from 2002 to 2009 with the aim of comparing the incidence of TRALI before and after the male-only plasma measure became effective. In the Netherlands all suspected cases of TRALI are reported to TRIP (Transfusion Reactions in Patients), the national haemovigilance system which became fully operational in 2003. The reports are submitted on a paper or digital reporting form; additional information is requested from hospitals if necessary for standardized classification. TRIP also receives information on reported TRALI cases from the blood service. Inclusion was terminated on 15th November 2009, when a further measure was introduced in the production of platelet concentrates.

Patients

TRALI case definition
TRALI cases had to conform to the criteria of the international consensus definition of TRALI: a patient was included in the cohort if there were clinical findings of hypoxia with bilateral infiltrates on the chest X-ray, starting within 6 hours of the transfusion of a labile blood component; circulatory overload had to be excluded as a (more likely) cause. Information on the clinical condition of the patient was evaluated for known risk factors for acute lung injury or other possible causes of hypoxia with a temporal relationship to the respiratory distress.

All reports were reviewed by a panel of transfusion experts and assessed on clinical information without considering results of leukocyte serological investigation, which in most cases were not available to the reviewing committee. If the patient had a risk factor for acute lung injury (e.g. aspiration, toxic inhalation, lung contusion, near-drowning, cardiopulmonary bypass, pneumonia, acute pancreatitis, sepsis) the case was flagged as a “possible TRALI” according to the consensus definition. Cases were excluded if there were other more likely causes for the respiratory problems. All blood components received by the patient up to 6 hours before onset of respiratory symptoms were recorded.

Transfusional setting and analysis periods
In the Netherlands plasma for transfusion is prepared from apheresis plasma which is released after the donor has been retested for infectious diseases after a minimum of six months. From October 2006 all plasma collected for Q-FFP and from July 2007 onwards all plasma distributed to the hospitals was from male never-transfused donors. Units distributed before 1st July 2007 were not recalled from the hospitals and were transfused
from the hospital inventory over the following months. Cryosupernatant plasma is occasionally used for refractory TTP and prepared on demand from Q-FFP.

Since 1988 all platelet products and since 2002 all red cell components have been leukoreduced by prestorage filtration ($<1 \times 10^6$ leukocytes per unit). Plasma for transfusion meets the same specification. Red blood cell concentrates are stored in SAGM additive solution and contain less than 20 ml of residual donor plasma. Over 90% of platelet concentrates are prepared from five pooled buffy coats and resuspended in either 200 ml of plasma from one of the donors (approx. 70% of total platelet units) or platelet additive solution with residual circa 85-100 ml plasma consisting of <20 ml of plasma from each buffy coat. Apheresis platelets are collected in a volume of 150 to 400 ml donor plasma and are used for special indications such as HLA-matched platelets, Parvo B19 or CMV-safe products. During the study years the total number of blood components distributed to the hospitals annually was approximately 700,000 units.

For TRALI cases reported after June 2007 the donation date of transfused plasma was checked. Reports where any plasma had been transfused were classified according to the donation date of the plasma as occurring with products from before or after the measure. TRALI cases involving no plasma were assigned to the same period as any plasma-associated TRALI in that month. The three analysis periods were: before the measure (2002 – June 2007), the transitional period during which cases were associated with plasma both from before and after the measure (July – November 2007) and after the measure (December 2007 – 15 November 2009). Plasma-associated cases during the transitional period were assigned according to the date of donation of the plasma and the cases without plasma were assigned half to before and half to after the male-only measure for purposes of calculation.

Statistical analysis
We compared the number of reported TRALI cases from before introduction of the male-only measure with the number after it had become effective. If the measure was effective a reduction will be seen in the number of TRALI patients who received one or more units of plasma, with or without other blood components, when only male plasma was available for transfusion. The number of reported cases where the patient had not been transfused with plasma reflects the overall sensitivity of TRALI detection and reporting in any period. This number was used to correct for changes in this sensitivity.

We expected that after the measure became effective there would be a drop in the proportion of TRALI reports after transfusion of plasma against the total number of reported TRALI cases. The drop represents the population attributable risk (PAR) for female plasma as available prior to the measure, and corresponds to the fraction of TRALI prevented by the implementation of male-only plasma. An additional sensitivity analysis
was performed, calculating the PAR separately for the ramp-up phase of reporting to TRIP (2002 – 2004) and for the plateau phase (2005 – July 2007). The main result was recalculated with the omission of reports from the interim period as an additional verification.

The formula used is:

\[\text{PAR} = \frac{\text{RB} - \text{RA}}{\text{RB}} = 1 - \frac{\text{risk after}}{\text{risk before}} \]

with \(\text{RB} \) the risk of TRALI in transfusion recipients before the measure and \(\text{RA} \) the risk in transfusion recipients after the measure.

During the reporting period there was little change in numbers of blood components distributed in the Netherlands, so stable proportions of patients transfused with different types and combinations of types of blood component are assumed. The number of TRALIs (N) reported in a given period is

\[N = XfY \]

in which \(X \) is the “true” incidence rate of TRALIs (number per year), \(f \) is the proportion detected and reported and \(Y \) the follow-up period (years).

\[\text{PAR} = 1 - \left(\frac{\text{risk after}}{\text{risk before}} \right) = 1 - \frac{\text{XA}}{\text{XB}} = 1 - \frac{\text{NA} \cdot (Y_A f_A)}{\text{NB} \cdot (Y_B f_B)} \]

For TRALIs where no plasma was transfused the “true” rate cannot have changed since the measure was introduced so

\[X_{B, \text{no plasma}} = X_{A, \text{no plasma}} \]

Since we collected TRALIs with and without plasma concurrently we can also assume that \(f \) at any time is the same for TRALI with and without plasma. This allows the proportion \(Y_A f_A/(Y_B f_B) \) (for all cases) to be estimated by \(N_{A, \text{no plasma}}/N_{B, \text{no plasma}} \). Thus the PAR was calculated as

\[\text{PAR} = 1 - \left(\frac{\text{NA}}{\text{NB}} \cdot \frac{N_{B, \text{no plasma}}/N_{A, \text{no plasma}}} \right) \]

simply using the observed numbers of reported TRALIs.

A confidence interval for the PAR was calculated using

\[\text{Var}[\ln(1-\text{PAR})] = 1/N_{B, \text{no plasma}} - 1/N_{A, \text{no plasma}}^{-1}/N_{A, \text{no plasma}}^{-1} \].

Results

Characteristics of the study population

The study population comprised 110 patients with TRALI approved by expert review as complying with the TRALI definition. Figure 1 shows the numbers of all suspected TRALIs per year from 2002 to 2009 according to the types of blood component(s) received by the patient.
Male-only plasma and TRALI prevention

TRALI before and after the male-only plasma measure

The earliest TRALI involving one or more plasma units from after the measure occurred in July 2007, the last case where one or more plasma units dated from before the measure occurred in November 2007. Thirty-one of the TRALI cases were designated as “possible TRALI” according to the consensus definition because one or more other risk factors for acute lung injury (ALI) were present.

Outcomes and estimation

The annual number of reports of TRALI rose for all types of blood component between 2002 and 2007, which can be attributed to increased awareness of TRALI. The initial rise in total annual number of reports to the new haemovigilance reporting system had leveled off in 2005. A total of 68 cases of TRALI occurred before the male-only plasma measure of which 36 involved plasma, with or without other types of blood components. From December 2007 there were 31 cases of which 8 involved plasma. Four of the eleven cases in the transitional period were associated with plasma, two with plasma donated before the measure. Table 1 summarizes the numbers of reports with and without plasma per analysis period. The overall PAR was 0.33 (95% CI: 0.09 – 0.51) for all TRALI. After exclusion of “possible TRALI” it was 0.37 (95% CI: 0.06 – 0.58). In the sensitivity analysis comparing the separate periods of 2002 – 2004 and 2005 – July 2007 to that after the measure the PAR was comparable though with a wider confidence interval: PAR 0.41 (95% CI: -0.07 – 0.67); and 0.31 (95% CI: -0.02 – 0.54) respectively.
Table 1: TRALI cases and transfused blood components per analysis period

<table>
<thead>
<tr>
<th>TRALI</th>
<th>Before the measure</th>
<th>Transitional period*</th>
<th>After the measure</th>
<th>PAR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Jan 2002-</td>
<td>July 2007-</td>
<td>Dec 2007-</td>
<td>1 – ((N_A/N_B)</td>
</tr>
<tr>
<td></td>
<td>July 2007</td>
<td>Dec 2007</td>
<td>15 Nov 2009</td>
<td>(N_B, no plasma/N_A, no plasma)</td>
</tr>
<tr>
<td>All TRALI</td>
<td>68</td>
<td>11</td>
<td>31</td>
<td>1-((36.5/73.5)</td>
</tr>
<tr>
<td>with plasma</td>
<td>36</td>
<td>2 before</td>
<td>8</td>
<td>(35.5/26.5)) = 0.33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 after</td>
<td></td>
<td>(95% CI: 0.09 –</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.51)</td>
</tr>
<tr>
<td>without plasma</td>
<td>32</td>
<td>7</td>
<td>23</td>
<td>1-((27/52)</td>
</tr>
<tr>
<td>Excluding “possible TRALI”</td>
<td>48</td>
<td>8</td>
<td>23</td>
<td>(22.5/18.5) = 0.37</td>
</tr>
<tr>
<td>with plasma</td>
<td>28</td>
<td>2 before</td>
<td>7</td>
<td>(95% CI: 0.06 –</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 after</td>
<td></td>
<td>0.58)</td>
</tr>
<tr>
<td>without plasma</td>
<td>20</td>
<td>5</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

* If cases in the interim period are left out of the calculation the PAR becomes: 1 – ((31/68)(32/23)) = 0.37 (95% CI: 0.12 – 0.54) and 0.40 (95% CI: 0.08 – 0.61) if also excluding “possible TRALI”.

Discussion

The male-only plasma measure was associated with a 33 percent reduction of TRALI in the Netherlands, a reduction totally driven by lower numbers of cases where plasma had been transfused in combination with red blood cells and/or platelets. The finding implies that against the average number of approximately 20 reports per year before the measure, some 7 of the previously reported cases annually may have been avoided by the measure. Moreover, since the plasma measure can only prevent TRALI caused by plasma, this size of effect means that the majority of TRALI cases where plasma had been transfused prior to the measure were in fact caused by female plasma. The figures in Table 1 show that TRALI cases where plasma had been transfused are in the majority in the period before the measure and that this is reversed after the measure.

We observed a higher attributable risk when cases of “possible TRALI” were excluded. In some cases where other risk factors for ALI were present, ALI was probably not induced by the transfusion. Inclusion of some such cases leads to dilution and underestimation of the effect of the measure. The higher attributable risk after exclusion of “possible TRALI” is probably more valid and provides further support that there is a true reduction.
Strengths and limitations

The strength of this analysis lies in its inclusion of all reported patients meeting the standardized criteria for TRALI in a whole country, with as little as possible interference from awareness of the results of leukocyte serology testing. Reporting of such a serious complication as TRALI to TRIP and/or the blood service is expected to be nearly complete. An important advantage is that we use the number of TRALIs not associated with plasma to correct for variability in detection and reporting behavior. The fact that a similar effect is found in the sensitivity analyses of the sub-periods supports our use of these cases as a comparator.

A limitation of the study is its observational nature and reliance on spontaneous reporting of cases. A recent analysis has shown that bias may operate in the decision whether to report a reaction as suspected TRALI. If any interpretation bias operated it could be expected to favor reports of TRALI associated with FFP and to have most strongly influenced TRALIs where FFP was the sole product transfused. However the present findings do not support this. Also, since most clinicians in The Netherlands are not aware of the plasma measure this reporting preference is unlikely to have changed and therefore could not have biased our analyses.

The overall blood use and the proportions of type of blood component remained largely stable over the study period, except for a slight (less than 10%) drop in the number of both RBC and plasma units distributed to the hospitals between 2002 and 2004. Thus a relative reduction of the use of plasma as compared to cellular blood components has not contributed to a lower incidence of TRALI. The assumption of unchanged risk associated with RBC and platelet transfusion could also be challenged if female plasma donors returned to whole blood donation. In fact however female donors continued to donate plasma for fractionation.

The overall incidence of reported TRALI appears to show a downward trend after the year 2007 (figure 1). Analyses by TRIP show that there have been increased reports of transfusion-associated circulatory overload and other transfusion reactions, suggesting that the diagnosis of TRALI is assigned more critically. As explained above the calculated drop in TRALI is based on the ratio of TRALI cases where plasma was (one of blood components) transfused, to cases without plasma, and would be valid despite a reduced trend in the overall level of TRALI detection and reporting.
Consistency with prior findings
A reduction by 33% is slightly higher but in the same order of magnitude as suggested by
the findings of leukocyte serology as reported recently from our country.13 The reduction is
comparable to observational pre- and post intervention data on ALI in ruptured abdominal
aneurysm repair from a single UK center (0.39, 95\% CI: 0.16 – 0.90).14 An American study
of TRALI fatalities in 2003–2005 found that 18 out of 38 probable TRALI fatalities (47\%)
were associated with female antibody-positive fresh frozen plasma and might be avoided by
limiting transfusion of leukocyte antibody-containing FFP.15 This proportion is again
similar although the relative contribution of allo-immune TRALI associated with FFP
would not necessarily be the same among cases with fatal outcome. A recent overview of
probable TRALI (including nonfatal cases) reported by the American Red Cross describes a
drop from 30 cases associated with plasma transfusion in 2006 to 10 cases in 2008 after
implementation of male-predominant plasma for transfusion.16

In the United Kingdom reports to SHOT of TRALI associated with FFP containing
patient-incompatible leukocyte-reactive antibodies dropped from 10 in 2003 to none in
2004–2007 since implementation of preferential use of male plasma. This suggests that, if
supply of exclusively male plasma is achieved, this measure could prevent most or all
TRALI caused by plasma. As explained above, SHOT assesses the likelihood that a
suspected TRALI is indeed transfusion-related partly on the basis of the finding of
concordant HLA antibodies in the transfused unit(s). The overall rate of reported TRALI
(assessed as highly likely, probable or possible) before the change in the UK was 1.9 per
100,000 units, compared with 2.6 per 100,000 in 2005-2006 in our registry. In The
Netherlands, the expert assessors were blinded to the results of serological investigation
from 2007 onwards. Prior to that year they were not consistently blind to the results but
these were not used for the clinical definition of TRALI. The calculated reduction in The
Netherlands is remarkably similar to the effect in the UK despite the important difference in
the assessment of cases; this is in line with the hypothesis of TRALI cases being prevented
by elimination of patient exposure to incompatible leukocyte antibodies in plasma from
female donors.

Meaning of the study, implications for clinicians and policymakers
Not in all countries are donors excluded if they have been recipients of transfusion. Plasma
from male donors who have (ever) been transfused should logically also be excluded,
although it has been established that pregnancy-related HLA antibodies persist for longer
than antibodies developed following blood transfusion. In The Netherlands it was possible
to implement the measures for no significant costs and without serious threat to the blood
(plasma) supply. We adopted the use of male-only plasma for the plasma added to platelet
pools in mid November 2009. A further safety improvement will be obtained if this
achieves a comparable risk reduction for the platelet concentrates preserved in plasma.

Some blood services have implemented antibody screening for all female donors, with
repetition of the screening following pregnancy.17 This should have comparable efficiency
in preventing TRALI, while resulting in fewer donor deferrals, but is associated with
increased costs. Other countries (e.g. France, Ireland, Norway, and Finland) use pooled
solvent-detergent (S/D) virally inactivated plasma and report that TRALI is not seen in
association with this product. Reduction in non-infectious transfusion complications (both
TRALI and allergic reactions) was included as an important aspect in a recent review of
cost-effectiveness aspects of this product.18

Conclusion
In conclusion, our findings suggest that in the Netherlands the male-only plasma measure
has led to a reduction of TRALI cases of about 33 percent.

Acknowledgements

The authors acknowledge the important role played by professionals in the hospitals and
blood service in reporting TRALI cases and supplying relevant information.
References

10. Sanquin Annual Reports available at http://www.bcr.sanquin.nl/Sanquin-eng/sqn_news.nsf/All/Annual-Reports.html