In Chapter 1 the necessity of knowledge of general cardiac development for a proper understanding of normal and abnormal pulmonary vein development is emphasized. A general overview of cardiac and pulmonary vein development is provided as well as an overview of the development of the cardiac conduction system, since (ab)normal pulmonary vein development and the potency for development of atrial arrhythmias are embryonically related. Under certain circumstances, initially non-functional embryonic deposited cardiac conduction cells are supposed to be reactivated and to contribute to the onset of arrhythmias.

Different heart fields are discriminated that contribute to the formation of the final heart. The first heart field forms the primitive heart tube that consists of a small atrial segment, an atrioventricular canal and a primitive left ventricle. The second heart field consists of an anterior heart field that contributes cells for the formation of the right ventricle and the proximal outflow tract, a secondary heart field, that contributes cells for the distal outflow tract, and a posterior heart field from which cells are derived for the development of the atria, the cardiac conduction system, and the sinus venosus, including the sino-atrial node, the pulmonary veins, the cardinal veins and the coronary sinus. Since this thesis deals with pulmonary vein development this posterior heart field is our main region of interest.

With regard to abnormal pulmonary vein development in relation to clinical entities it is emphasized that heart malformations are mostly the result of highly complex cascades of gene interactions combined with epigenetic factors that cannot be simply deduced to isolated clinical entities.

In Chapter 2 the histology of the left atrial wall in relation to the incorporation of the pulmonary veins is studied immunohistochemically in sixteen human embryos and fetuses, one neonate and five adults. Based on histological criteria, three different compartments can be distinguished in the left atrium: 1. the smooth-walled left atrial body with vessel wall tissue, which is histologically identical to the vessel wall of the incorporated pulmonary veins, 2. the trabeculated left atrial appendage without vessel wall tissue and 3. a transitional zone in between the left atrial body and the left atrial appendage which is smooth-walled, lacks vessel wall tissue and histologically resembles the smooth-walled sinus venarum (body) of the right atrium. This border
zone is hypothesized to be the left part of the embryonic sinus venosus, that has shifted to the left due to incorporation of the pulmonary veins. Furthermore, areas of discontinuous or even absent myocardium are demonstrated in between the pulmonary veins and in the transitional zone. These areas are probably the substrate for arrhythmias. Besides that, the left atrial wall is supposed to be vulnerable to damage because of this myocardial discontinuity and the fact that in case of ablation strategies the histological border between the left atrium and the pulmonary veins cannot be found.

In Chapter 3 we compare the development and differentiation of the myocardium and vascular wall of the pulmonary veins, the left atrial dorsal wall and the atrial septum in wild type with podoplanin knockout embryos (E10-E18.5) by 3D reconstruction and immunohistochemistry and demonstrate that in mutants, the myocardium of the pulmonary veins, the left atrial dorsal wall and the atrial septum is hypoplastic and that extension of smooth muscle cells into the left atrial body is diminished. Since podoplanin is a marker of myocardial and mesenchymal cells derived from the posterior heart field, we conclude that the myocardium of the pulmonary veins, the dorsal atrial wall and the atrial septum, as well as the smooth muscle cells are derived from the posterior heart field, regulated by podoplanin. We state that more insight in the variation in myocardial cuffing of the pulmonary veins might enlighten us on the variability of the occurrence of ectopic automaticity in the pulmonary vein myocardial sleeve.

In Chapter 4 we investigate the wall of the pulmonary veins and the left atrial body in ten human neonates with total anomalous pulmonary venous connection (TAPVC), using histological and immunohistochemical techniques. As controls, two normal neonatal and adult hearts and five neonatal hearts with partial anomalous pulmonary venous connection (PAPVC) or situs inversus are studied. We demonstrate that in hearts with TAPVC, the left atrial body is small, lacks vessel wall tissue and has a hypoplastic myocardial layer. No myocardial layer is formed around the pulmonary veins. In hearts with PAPVC, only the non-left atrial draining pulmonary vein lacks a myocardial covering, whereas in hearts with situs inversus, pulmonary vein
veins connecting to the right-sided left atrium are normally myocardialized. Based on these results, we conclude that recruitment of cells, for addition of myocardium and smooth muscle cells at the venous pole, mainly takes place from the morphological left side. Moreover, we state that an open connection of the pulmonary veins with the morphological left atrium is mandatory for a normal left atrial size, the presence of vessel wall tissue and myocardialization of the left atrial body and pulmonary veins. Absence of myocardium covering the pulmonary veins is hypothesized to enhance susceptibility to pulmonary vein stenosis and to prevent the onset of pulmonary vein originating arrhythmias. As a link to chapter 3, we postulate that the embryonic posterior heart field might be responsible for the abnormal myocardialization and smooth muscle cell formation in TAPVC.

In Chapter 5 a clinical case with right-sided pulmonary vein stenosis together with a left-sided pulmonary varix is embryologically and hemodynamically unravelled. A pulmonary varix is a dilated and tortuous pulmonary vein resulting from congenital or acquired obstruction of pulmonary vein drainage. In this case, we deal with a combination of congenital and acquired pulmonary vein stenosis on the right side and a congenitally formed pulmonary varix on the left. The difficulty and importance to determine whether the pulmonary vein stenosis is congenital or acquired, is emphasized.

In conclusion in Chapter 6 current opinions on normal and abnormal pulmonary vein development in relation to clinical (management of) diseases are presented, based on the literature. This review serves as a general discussion of the contents of this thesis. Several questions are addressed as well as conceptual controversies. A general overview of cardiac development is provided, followed by definitions of the different components of the venous pole, the role of the second heart field at the venous pole, developmental concepts on the origin of normal and abnormal pulmonary vein drainage, the relation of pulmonary vein development to arrhythmogenesis and the consequences of the various concepts of pulmonary vein development on clinical management. Finally, conclusions and future perspectives are expressed.
In Hoofdstuk 1 wordt het belang van het vergaren van kennis over de algemene hartontwikkeling voor een goed begrip van normale en abnormale pulmonaalvenen (longader) ontwikkeling benadrukt. Er wordt een algemeen overzicht gegeven van de hart en pulmonaalvenen ontwikkeling. Aangezien (ab)normale pulmonaalvenen ontwikkeling en de potentie om atriale ritmestoornissen te ontwikkelen embryonaal aan elkaar zijn gerelateerd, wordt eveneens een overzicht gegeven van de ontwikkeling van het geleidingssysteem van het hart. Onder bepaalde omstandigheden, kunnen embryonaal ontstane geleidingssysteem eigenschappen in tot dan toe niet-functionele geleidingssysteem cellen gereactiveerd worden en bijdragen aan het ontstaan van ritmestoornissen.

Er kunnen verschillende “heart fields” worden onderscheiden die bijdragen aan de vorming van het volgroeide hart. Het zogenaamde first of primary heart field vormt de primitieve hartbuis, die bestaat uit een klein atriaal (boezem) segment, een atrioventriculair kanaal en een primitieve linker ventrikel (kamer). Het zogenaamde second heart field bestaat uit een anterior heart field dat bijdraagt aan de vorming van de rechter ventrikel en het aansluitende eerste deel van het uitstroomsegment, een secondary heart field, dat cellen aanlevert voor het laatste deel van het uitstroomsegment, en een posterior heart field van waaruit cellen verkregen worden voor de ontwikkeling van de atria, het geleidingssysteem van het hart en de sinus venosus, waaronder de sinusknoop, de pulmonaalvenen, de cardinaalvenen en de sinus coronarius vallen. Aangezien dit proefschrift gaat over de ontwikkeling van de pulmonaalvenen, is dit laatstgenoemde posterior heart field het gebied van focus van dit proefschrift.

Wat betreft abnormale pulmonaalvenen ontwikkeling in relatie tot specifieke klinische aandoeningen, moet benadrukt worden dat hartafwijkingen meestal de resultante zijn van zeer complexe cascades van geneinteracties gecombineerd met omgevingsfactoren van waaruit deze specifieke klinische aandoeningen niet eenvoudigweg herleidbaar zijn.

In Hoofdstuk 2 wordt de histologie van de linker atriumwand in relatie tot de incorporatie van de pulmonaalvenen immunohistochemisch bestudeerd in zestien humane embryo’s en foetussen, een neonaat en vijf volwassenen. Gebaseerd
op histologische criteria, kunnen drie verschillende compartimenten worden onderscheiden in het linker atrium: 1. het gladwandige corpus van het linker atrium bekleed met vaatwand weefsel, histologisch identiek aan de vaatwand van de geïncorporeerde pulmonaalvenen, 2. het getrabeclariseerde linker hartoor zonder vaatwand weefsel, en 3. een gladwandige overgangszone tussen het corpus van het linker atrium en het linker hartoor, zonder vaatwand en histologisch erg lijkend op het weefsel van de sinus venarum (het corpus) van het rechter atrium. Verondersteld wordt dat deze overgangszone het linkszijdige deel van de embryonale sinus venosus is, die ten gevolge van de incorporatie van de pulmonaalvenen is “opgeschoven” naar de overgang met het linker hartoor. Daarnaast wordt aangetoond, dat zowel in het gebied tussen de pulmonaalvenen als in de genoemde overgangszone, het myocard plaatselijk discontinu of zelfs afwezig is. Deze plekken kunnen het substraat voor atriale ritmestoornissen zijn en kunnen bovendien de linker atriumwand kwetsbaar maken voor beschadiging. Het feit dat, tijdens ablatie technieken, de histologische grens tussen het linker atrium en de pulmonaalvenen niet zichtbaar is, maakt de linker atriumwand extra kwetsbaar.

In **Hoofdstuk 3** vergelijken we, met behulp van 3D reconstructies en immunohistochemische technieken, de ontwikkeling en differentiatie van het myocard en de vaatwand van de pulmonaalvenen, de linker atrium achterwand en het atrium septum in wild type muizen embryo’s met die van *podoplanine* knockout muizen embryo’s (E10-E18.5). We tonen aan dat in mutanten, het myocard van de pulmonaalvenen, de linker atrium achterwand en het atrium septum hypoplastisch is en dat bovendien de aanwezigheid van gladde spiercellen in het corpus van het linker atrium verminderd is. Aangezien *podoplanine* een marker is voor myocardiale en mesenchymale cellen afkomstig uit het posterior heart field, concluderen we dat zowel het myocard van de pulmonaalvenen, de linker atrium achterwand en het atrium septum als de gladde spiercellen, afkomstig zijn uit dit posterior heart field, gereguleerd door *podoplanine*. We stellen vast dat meer inzicht in variatie in myocardiale bekleding van de pulmonaalvenen ons opheldering zou kunnen geven over de variabiliteit in het ontstaan van ectopische automaticiteit in deze myocardiale laag rond de pulmonaalvenen.
In **Hoofdstuk 4** onderzoeken we de wand van de pulmonaalvenen en het linker atrium in tien humane neonaten met totaal abnormale pulmonaalvenen connectie (TAPVC), gebruik makend van histologische en immunohistochemische technieken. Ter controle worden twee normale humane neonatale en volwassen harten en vijf humane neonatale harten met partieel abnormale pulmonaalvenen connectie (PAPVC) of situs inversus bestudeerd. We stellen vast dat in harten met TAPVC, het corpus van het linker atrium onderontwikkeld is, geen vaatwand bevat en uit hypoplastisch myocard bestaat. Een myocardiale laag rond de pulmonaalvenen wordt niet aangelegd. In harten met PAPVC, ontbreekt de myocardiale laag alleen rond de pulmonaalvene die niet naar het linker atrium draineert, terwijl in harten met situs inversus, pulmonaalvenen die verbonden zijn met het rechtsgelegen linker atrium normaal gemyocardialiseerd zijn. Gebaseerd op deze resultaten, concluderen we dat de rekrutering van cellen, voor aanbouw van myocard en gladde spiercellen ter plaatse van de veneuze pool, hoofdzakelijk plaats vindt vanuit de morfologisch linker kant van het posterior heart field. We stellen bovendien vast, dat een open connectie van de pulmonaalvenen met het morfologische linker atrium een voorwaarde is voor het ontwikkelen van een normale linker atrium grootte, de aanwezigheid van vaatwand weefsel in het linker atrium en een normale myocardialisatie van het corpus van het linker atrium en de pulmonaalvenen. We veronderstellen, dat de afwezigheid van myocard rond de pulmonaalvenen de kwetsbaarheid van de pulmonaalvenen voor het ontstaan van pulmonaalvenen stenose verhoogt, en tegelijkertijd het ontstaan van ritmestoornissen, afkomstig uit de pulmonaalvenen, voorkomt. In combinatie met de opgedane kennis in hoofdstuk 3, constateren we, dat het embryonale posterior heart field verantwoordelijk zou kunnen zijn voor de abnormale myocardialisatie en de abnormale vorming van gladde spiercellen in TAPVC harten.

In **Hoofdstuk 5** wordt een klinische casus met rechtszijdige pulmonaalvenen stenose gepaard gaande met een linkszijdige pulmonale varix embryologisch en hemodynamisch onder de loep genomen. Een pulmonale varix is een aangeboren of verworven spatader in de long die kan ontstaan ten gevolge van een belemmerde pulmonaalvenen drainage. In deze casus is er sprake van een combinatie van
congenitale en verworven pulmonaalvenen stenose rechts en een congenitaal ontstane pulmonale varix links. De complexiteit en het belang van het vaststellen of de pulmonaalvenen stenose congenitaal danwel verworven is, wordt benadrukt.

We eindigen in Hoofdstuk 6 met de huidige opinie over normale en abnormale pulmonaalvenen ontwikkeling in relatie tot klinische (behandeling van) ziekten, gebaseerd op de literatuur. Dit review dient als algemene discussie voor de inhoud van dit proefschrift. Verscheidene vragen worden behandeld en beantwoord evenals conceptuele controverses. Er wordt een algemeen overzicht van de hart ontwikkeling gegeven, gevolgd door definities van de verschillende componenten van de veneuze pool, de rol van het second heart field ter plaatse van de veneuze pool, concepten over de ontwikkeling van normale en abnormale pulmonaalvenen drainage, de relatie van pulmonaalvenen ontwikkeling tot arrhythmogenese en de consequenties die de verscheidene concepten over pulmonaalvenen ontwikkeling hebben voor klinisch management. Tot slot worden conclusies en toekomstperspectieven weergegeven.