WATER ON WELL-DEFINED PLATINUM SURFACES:
AN ULTRA HIGH VACUUM
AND ELECTROCHEMICAL STUDY

PROEFSCHRIFT

ter verkrijging van
de graad van Doctor aan de Universiteit Leiden,
op gezag van de Rector Magnificus prof. mr. P. F. van der Heijden,
volgens besluit van het College voor Promoties
te verdedigen op donderdag 14 oktober 2010
klokke 11.15 uur

door

Maria Johanna Theresia Cornelia (Janneke) van der Niet

geboren te Leiden in 1981
Promotiecommissie

Promotor: Prof. dr. M. T. M. Koper

Co-promotor: Dr. L. B. F. Juurlink

overige leden: Prof. dr. M. Bonn (AMOLF/Universiteit van Amsterdam)
Prof. dr. J. Brouwer
Prof. dr. B. E. Hayden (University of Southampton, UK)
Dr. G. Held (University of Reading, UK)
Prof. dr. G. J. Kroes
Prof. dr. B. E. Nieuwenhuys

The research described in this thesis has been supported financially by NWO (Netherlands Organization for Scientific Research), under project number 700-55-441.
Printed by F&N Boekservice
Die Wissenschaft kann die letzten Rätsel der Natur nicht lösen. Und das ist so, weil wir letztlich selbst ein Teil des Rätsels sind, das wir zu lösen versuchen.

Max Planck (1858–1947)
Table of Contents

1 Introduction .. 1
 1.1 Heterogeneous catalysis .. 1
 1.2 Fuel cells .. 2
 1.3 Ultra high vacuum modeling 3
 1.4 Model catalysts .. 3
 1.5 Scope of this thesis ... 4
 1.6 Literature overview .. 5
 1.6.1 Water on platinum ... 5
 1.6.2 Oxygen on platinum .. 6
 1.6.3 Hydrogen on platinum .. 7
 1.6.4 Co-adsorption of H₂O and O\textsubscript{ad} on platinum 8
 1.6.5 Co-adsorption of H₂O and H\textsubscript{ad} on platinum 9
 1.6.6 Electrochemistry ... 10

2 Experimental techniques and set-up 11
 2.1 Ultra high vacuum .. 11
 2.1.1 Temperature programmed desorption 11
 2.1.2 Low energy electron diffraction 12
 2.1.3 Reflection absorption infrared spectroscopy 13
 2.1.4 Apparatus ... 13
 2.1.5 General procedures .. 15
 2.2 Electrochemistry ... 17
 2.2.1 Electrochemical cell .. 17
 2.2.2 Cyclic voltammetry ... 18
 2.2.3 Electrochemical impedance spectroscopy 18

3 The influence of step geometry on the desorption characteristics of O₂, D₂, and H₂O from stepped Pt surfaces 21
 3.1 Introduction .. 22
 3.2 Experimental .. 24
 3.3 Results and discussion .. 24
 3.3.1 Oxygen ... 24
 3.3.2 Deuterium .. 26
 3.3.3 Water .. 30
 3.4 Conclusion .. 35

4 Co-adsorption of O and H₂O on nano-structured platinum surfaces: does OH form at steps? ... 37
TABLE OF CONTENTS

5 The interaction between H$_2$O and pre-adsorbed O on the stepped Pt(533) surface

- **5.1 Introduction** .. 46
- **5.2 Experimental** ... 49
- **5.3 Results and discussion** 49
 - 5.3.1 O$_2$ adsorption/desorption 49
 - 5.3.2 H$_2$O only .. 50
 - 5.3.3 Co-adsorption of 18O$_{ad}$ and H$_2^{16}$O 52
- **5.4 Conclusion** ... 59

6 A detailed TPD study of H$_2$O and pre-adsorbed O on the stepped Pt(553) surface

- **6.1 Introduction** .. 62
- **6.2 Experimental** ... 64
- **6.3 Results and discussion** 64
 - 6.3.1 O$_2$ adsorption/desorption 64
 - 6.3.2 H$_2$O desorption from the bare surface 65
 - 6.3.3 Co-adsorption of 18O$_{ad}$ and H$_2^{16}$O 67
 - 6.3.4 Unannealed Pt(553) surface 75
- **6.4 Conclusion** ... 77

7 Tuning hydrophobicity of platinum by small changes in substrate morphology

8 Hydrophobic interactions between amorphous solid water and pre-adsorbed D on the stepped Pt(533) surface

- **8.1 Introduction** .. 88
- **8.2 Experimental** ... 89
- **8.3 Results** .. 90
- **8.4 Discussion** .. 97
- **8.5 Conclusion** ... 102

9 The interaction between H$_2$O and pre-adsorbed D on the stepped Pt(553) surface

- **9.1 Introduction** .. 104
- **9.2 Experimental** ... 105
- **9.3 Results** .. 106
 - 9.3.1 H$_2$O and D$_2$ desorption from Pt(553) and D/Pt(553) .. 106
 - 9.3.2 $\theta_D = 1$ ML; $0 < \theta_{H_2O} < 2.28$ ML 107
 - 9.3.3 $\theta_{H_2O} \approx 1.3$ ML; $0 < \theta_D < 1$ 110
- **9.4 Discussion** .. 112
 - 9.4.1 H$_2$O and D$_2$ desorption from Pt(553) and D/Pt(553) .. 112
9.4.2 $\theta_D = 1 \text{ ML}; 0 < \theta_{H_2O} < 2.28 \text{ ML}$
9.4.3 $\theta_{H_2O} \approx 1.3 \text{ ML}; 0 < \theta_D < 1$
9.5 Conclusion

10 Impedance spectroscopy of H and OH adsorption on stepped single-crystal platinum electrodes in alkaline and acidic media

10.1 Introduction
10.2 Experimental
10.3 Results
10.3.1 Pt(111)
10.3.2 Stepped surfaces
10.4 Discussion
10.5 Conclusions

11 Water dissociation on well-defined platinum surfaces: the electrochemical perspective

11.1 Introduction
11.2 Experimental
11.3 Results
11.3.1 Pt[n(111)x(110)]
11.3.2 Pt[n(111)x(100)]
11.3.3 pH-dependence
11.4 The model
11.5 Water dissociation on well-defined platinum surfaces: the UHV perspective
11.6 Discussion
11.7 Conclusion

Appendix
Bibliography
Summary
Samenvatting
List of publications
Curriculum Vitae
Nawoord
Quotes