

58. den HM, Westerterp-Plantenga MS, Bouwman FG, Mariman EC, Westerterp KR. Postprandial responses in hunger and satiety are
associated with the rs9939609 single nucleotide polymorphism in FTO. Am J Clin Nutr 2009;90:1426-32.

84. Funari SS. Effects of oleic acid and its congeners, elaidic and stearic acids, on the structural properties of phosphatidylethanolamine membranes. 2003.

111. Hotta K, Funahashi T, Bodkin NL et al. Circulating concentrations of the adipocyte protein adiponectin are decreased in parallel with reduced insulin sensitivity during the progression to type 2 diabetes in rhesus monkeys. Diabetes 2001;50:1126-33.

114. Huang LS, Kim MR, Jeong TS, Sok DE. Linoleoyl lysophosphatidic acid and linoleoyl lysophosphatidylcholine are efficient substrates for mammalian lipoxygenases. Biochim Biophys Acta 2007;1770:1062-70.

135. Korsheninnikova E. Sustained activation of the mammalian target of rapamycin nutrient sensing pathway is associated with hepatic insulin resistance, but not with steatosis, in mice. 2006.

177. Nascimento EB. Insulin-mediated phosphorylation of the proline-rich Akt substrate PRAS40 is impaired in insulin target tissues of high-fat diet-fed rats. 2006.

185. Pai T, Yeh YY. Stearic acid unlike shorter-chain saturated fatty acids is poorly utilized for triacylglycerol synthesis and beta-oxidation in cultured rat hepatocytes. Lipids 1996;31:159-64.

244. Tserng KY, Griffin RL. Ceramide metabolite, not intact ceramide molecule, may be responsible for cellular toxicity. Biochem J 2004;380:715-22.

251. van den Hoek AM, Heijboer AC, Voshol PJ et al. Chronic PYY3-36
 treatment promotes fat oxidation and ameliorates insulin resistance in

 Leptin deficiency per se dictates body composition and insulin action in

253. van Eijk M, Aten J, Bijl N et al. Reducing glycosphingolipid content in
 adipose tissue of obese mice restores insulin sensitivity, adipogenesis and

254. van Herpen NA, Schrauwen-Hinderling VB. Lipid accumulation in non-
 adipose tissue and lipotoxicity. Physiol Behav 2008;94:231-41.

255. van Wymelbeke V, Himaya A, Louis-Sylvestre J, Fantino M. Influence of
 medium-chain and long-chain triacylglycerols on the control of food intake

256. Vernochet C, Peres SB, Farmer SR. Mechanisms of obesity and related
 pathologies: transcriptional control of adipose tissue development. FEBS J
 2009;276:5729-37.

257. Vis DJ, Westerhuis JA, Smilde AK, van der GJ. Statistical validation of
 megavariable effects in ASCA. BMC Bioinformatics 2007;8:322.

258. Voshol PJ. In muscle-specific lipoprotein lipase-overexpressing mice,
 muscle triglyceride content is increased without inhibition of insulin-
 stimulated whole-body and muscle-specific glucose uptake. 2001.

259. Vrang N, Madsen AN, Tang-Christensen M, Hansen G, Larsen PJ. PYY(3-
 36) reduces food intake and body weight and improves insulin sensitivity
 in rodent models of diet-induced obesity. Am J Physiol Regul Integr Comp
 Physiol 2006;291:R367-R375.

 obesity: effects of four interventions on body composition, resting energy

261. Wajchenberg BL. Subcutaneous and visceral adipose tissue: their relation

 mass: a cellular body composition level modeling analysis. Am J Physiol
 Endocrinol Metab 2007;292:E49-E53.

