PhD thesis

Transforming Growth Factor-β in Pathogenesis of Breast Cancer Metastasis and Fibrosis

Maj Petersen

Department of Molecular Cell Biology
Leiden University Medical Center
December, 2009
Transforming Growth Factor-β in Pathogenesis of Breast Cancer Metastasis and Fibrosis

Proefschrift

ter verkrijging van
de graad van Doctor aan de Universiteit Leiden,
op gezag van Rector Magnificus prof. mr. P.F. van der Heijden,
volgens besluit van het College voor Promoties
te verdedigen op woensdag 30 juni 2010
klokke 15.00 uur

door

Maj Petersen

geboren te Gentofte, Denemarken
in 1977
Promotiecommissie

Promotor Prof. Dr. Peter ten Dijke
Co-Promotor Dr. Evangelia Pardali
Co-Promotor Dr. Gabri van der Pluijm

Overige leden

Prof. Dr. B. van de Water
Prof. Dr. S. Papapoulos
Prof. Dr. J. Morreau
Dr. E. de Heer
Dr. G. Berx, VIB-Gent University, Belgium

The studies presented in this thesis were performed at the Leiden University Medical Center, at the Department of Molecular Cell Biology, Endocrinology and Urology.

The research described in this thesis was financially supported by grants from the Sixth European Union Framework Program, i.e. the EpiPlastCarcinoma Marie Curie RTN (project 005428), Tumor-Host Genomics (project 518198) and PROMET (project LSH-5-2207-018858)

The printing of this thesis was kindly sponsored by:
AstraZeneca
Novartis
Preface

This dissertation is the result of four years of dedicated and intense research on the pathobiology of transforming growth factor-β. Particularly focused on breast cancer and skeletal metastasis and the therapeutic intervention with various sites of TGF-β signaling. Through the study of the role of this growth factor in in vitro and in vivo models of pathology and particularly breast cancer metastasis it is my hope that we have contributed to the unraveling of the cancer code and progressed a small step in the direction of improved cancer treatment.

The study was commenced in March 2005 and finished in March 2009 under the supervision of Prof. Dr. Peter ten Dijke in the department of Molecular Cell Biology and later in close collaboration with Dr. Gabri van der Pluijm at the department of Urology and Endocrinology at the Leiden University Medical Center in The Netherlands. The study was part of a European Union Marie Curie Research Training Network ”EpiPlastCarcinoma” (project 005428). A fantastic group of European senior scientists whom through their encouraging support not only functioned as great mentors and teachers but also inspired and broadened our scientific view. The consortium has provided a platform for stimulating cross-boarder fertilization of results and a forum for free discussion of results and future directions.

It has been some hectic years of great challenges and an eye-opening adventure to both the greatly rewarding and at times cruel world of academic scientific research.

The Hague, December 2009
Maj Petersen
Contents

Preface v

1 Introduction 1

1.1 Transforming growth factor-β superfamily .. 1
 1.1.1 TGF-β signaling .. 2
 1.1.2 Non-canonical Smad signaling 4
 1.1.3 Controlling TGF-β signaling 5

1.2 TGF-β superfamily in development and developmental EMT 8
 1.2.1 Ligands, receptors, and Smads in development 8
 1.2.2 TGF-β and BMPs in developmental EMT 10

1.3 Transforming growth factor-β in breast cancer: Angel or devil 11
 1.3.1 The primary tumor .. 12
 1.3.2 Epithelial plasticity .. 18

1.4 Breast cancer bone metastasis .. 23
 1.4.1 The bone microenvironment 23
 1.4.2 Physiological niches of the bone marrow 24
 1.4.3 The vicious cycle of bone metastasis 27
 1.4.4 Animal models of osteotropic breast cancers and in vivo imaging 27
 1.4.5 Gene signatures of breast cancer bone metastasis 29

1.5 Disrupting TGF-β signaling in breast cancer metastasis 31
 1.5.1 Targeting ligands .. 32
 1.5.2 Targeting TGF-β receptors 33
 1.5.3 Alteration of BMP and accessory receptors 35
 1.5.4 Disrupting the common Smad4 and R-Smads 36
 1.5.5 Targeting I-Smads, co-repressors and ubiquitin ligases 36
 1.5.6 Downstream mediators of TGF-β and BMP 37
 1.5.7 Interplay between TGF-β and BMPs 38
 1.5.8 BMP antagonists .. 38
 1.5.9 Targeting the breast cancer stroma 39

1.6 Pathobiology of TGF-β in fibrosis 40
 1.6.1 Targeted therapy to TGF-β in fibrosis 41

1.7 Outline of the thesis .. 65
2 Smad2 and Smad3 have opposing roles in breast cancer bone metastasis by differentially affecting tumor angiogenesis 67

3 Transforming growth factor-β employs HMGA2 to elicit epithelial mesenchymal transition 93

4 Constitutive Activation of Activin Receptor-like Kinase 2 in Breast Cancer Cells inhibits Metastatic Progression and Osteolytic Bone Lesions 113

5 Oral administration of GW788388, a kinase inhibitor of the TGF-β type I and type II receptors, reduces renal fibrosis in db/db mice. 135

6 Summary and Discussion 157
 6.1 Modulation of the TGF-β signaling pathway 158
 6.2 Clinical applications and therapeutic opportunities 166
 6.3 Perspectives 168

7 Miscellaneous 177
 7.1 Samenvatting 177
 7.2 Curriculum Vitae 179
 7.3 List of Publications 181
 7.4 List of Abbreviations 182
 7.5 Acknowledgements 185