A comparison of the Doppler-derived maximal systolic acceleration versus the ankle-brachial pressure index for detecting and quantifying peripheral arterial occlusive disease in diabetic patients

Accepted for publication J Cardiovasc Surg

R.B.M. van Tongeren
A.J.N.M. Bastiaansen
R.C. van Wissen
S. le Cessie
J.F. Hamming
J.H. van Bockel
Abstract

Aim: To assess the diagnostic accuracy of the Doppler derived maximal systolic acceleration (ACC_{max}) as a novel technique for evaluating peripheral arterial occlusive disease (PAOD) in patients with diabetes mellitus, who are known for a falsely elevated ankle-brachial index (ABI).

Methods: In this retrospective analysis ACC_{max} was measured at ankle level in a series of 163 consecutive patients referred to the vascular laboratory for initial assessment of PAOD. Patients were classified according to the presence or absence of diabetes. In the non-diabetic patients PAOD was defined as ABI \leq 0.90. This group was used to establish the association between ACC_{max} and ABI in a linear regression model. The result was then used to predict the presence or absence of PAOD in the diabetic patients.

Results: 301 lower limbs were examined. The study group consisted of 166 limbs of patients without diabetes and 135 limbs of patients with diabetes. PAOD was present in 52% of limbs in the nondiabetic group versus 59% of limbs in the diabetic group (ABI \leq 0.90, or in case of non-compliant vessels toe-brachial index (TBI) \leq 0.70). An ACC_{max} cut-off value of >10 m/s^2 was found to be highly predictive for the exclusion of PAOD (negative predictive value 95%). In addition, the ACC_{max} cut-off value of <6.5 m/s^2 was highly predictive for the detection of PAOD (positive predictive value 99%). A strong quadratic association was found between ACC_{max} and ABI in the non-diabetic group (R^2=0.85). In the diabetic patients R^2 values were 0.81 and 0.79 after ABI and TBI measurement respectively.

Conclusion: DUS-derived ACC_{max} is an accurate marker that could offer significant benefits for the diagnosis of PAOD, especially in diabetic patients.
Introduction

Measuring the pressure in the ankle arteries has become a standard in the initial evaluation of patients with suspected peripheral arterial occlusive disease (PAOD). The diagnosis PAOD is generally considered at an ankle-brachial index (ABI) less than or equal to 0.90 is associated with a 3-6 fold increased risk of cardiovascular mortality. This risk is proportionally related to the degree of ABI reduction, i.e. a lower ABI predicts a higher mortality risk. In patients with diabetes, PAOD is even more aggressive and the cardiovascular event rates are higher than in comparable non-diabetic populations. At least 20% of patients with PAOD have diabetes while the prevalence of PAOD in diabetic patients is as high as 29%. The number of patients with diabetes has significantly increased during the past 20 years and it is likely that this number will double in the next 20 years.

ABI measurement provides functional information about the presence and severity of PAOD. Patients with diabetes however, may have stiffer or even densely calcified arteries (Monckeberg’s sclerosis) that are less or even not compressible resulting in falsely elevated ankle pressures. Pressure measurements therefore may under-appreciate disease severity and renders ABI of limited use in a large group of patients with diabetes. An ABI ≥1.30 is considered as unreliable, but more misleading is that also lower values (ABI <1.30) may be overestimated.

Since the mid-1970s several authors have reported good results using qualitative or quantitative waveform parameters for the assessment of peripheral arteries. However, most methods have not gained extensive clinical use, mainly due to their complexity or need for additional equipment. Furthermore, most techniques were adopted to evaluate the presence or absence of a significant stenosis in the aortoiliac segment. More recently, Bardelli et al. suggested the maximal systolic acceleration (ACCmax) measured by duplex ultrasound as a new velocimetric parameter to assess renal artery stenosis with simple and accurate test characteristics. Where distal arterial pressure measurements tend to be unreliable in diabetic patients, duplex assessment is very well feasible. We aimed at Doppler measurements to evaluate ACCmax as new instrument for revealing the presence and severity of PAOD in diabetic patients in whom ABI measurement is anticipated to be misleading.

Methods

Patients. During a 12-months period, we reviewed all patients referred to our vascular laboratory for ABI and arterial duplex ultrasound (DUS) assessment of the lower limb. All evaluations were performed at the Leiden University Medical Center by a single vascular technologist (R.W.). Patients were classified based on the presence or absence of diabetes that was identified by a fasting plasma glucose value of 7 mmol per L or higher or the
use of diabetes medication. In case of diabetes and ‘non-compressible’ vessels (ABI≥1.30),
toe pressures were measured according to international guidelines.1,10 Toe-brachial index
(TBI) values ≤0.70 are considered abnormal. Thus a non-diabetic group was used to
establish the association between ACC\textsubscript{max} and ABI. The diabetic patients were divided in
two subgroups: diabetic patients in whom ABI outcome was lower than 1.30, and diabetic
patients in whom TBI measurement was performed.

\textbf{Ankle-brachial index measurement.} Resting ABI measurement served as reference standard
for the presence or absence of PAOD and was performed with the patient in supine position.
In case of ABI≥1.30, toe pressures were used to calculate TBI. The absolute pressures in both
arms and legs were measured by sphygmomanometry, using an 8 MHz continuous wave
Doppler probe (Imexdop CT+, Nicolet Vascular Inc., Golden, USA) and a calculating cuff
inflator (Hokanson TD 312, P.E. Hokanson Inc., Bellevue, USA) with a 12 cm cuff. The cuff was
wrapped around the arm or ankle and inflated above the systolic pressure. The cuff was then
slowly deflated until the signal returned. The point at which the signal returned was taken as
the systolic pressure for the specific artery. The ABI for each leg was calculated as the ratio
of the higher of two systolic ankle pressures (posterior tibial or dorsalis pedis) and the higher
of the left and right brachial artery systolic pressures. The ABI ≤0.90 was taken as denoting
the presence of significant PAOD in accord with the Trans-Atlantic Inter-Society Consensus
Document on Management of Peripheral Arterial Disease (TASC).1

Toe pressures were measured by photoplethysmography (PPG) (VasoGuard XP 84, VIASYS
Healthcare Inc., Germany). The cuff was wrapped around the toe and inflated above the
systolic pressure. The cuff was then slowly deflated until the signal returned. The point at
which the signal returned was taken as the systolic pressure for the specific artery. The TBI
for each toe was calculated as the ratio of systolic toe pressures and the higher of the left
and right brachial artery systolic pressures.

\textbf{Duplex ultrasound. DUS was performed using a 5-7.5 MHz transducer (Aloka SSD-5500,
Aloka, Tokyo, Japan) at <60° Doppler insonation angles. Doppler waveforms were obtained
at the level of the ankle from the posterior tibial artery and anterior tibial artery and were
stored on hard disc. ACC\textsubscript{max} was defined according to Bardelli et al.19 as the maximal slope
of the Doppler curve in the early systolic phase (figure 1). The ACC\textsubscript{max} was obtained and
computer-based calculated from the same artery that provided the higher of the two
systolic ankle pressures. The investigator performing these calculations (A.B.) was blinded
for the results of ABI measurements.

\textbf{Data analysis.} In the non-diabetic patient group, sensitivity and specificity for various
thresholds of ACC\textsubscript{max} were calculated using receiver operating characteristic curve (ROC)
analysis to define cut-off values for establishing PAOD. Subsequently, linear regression
was used to determine the association between ACC\textsubscript{max} and ABI in the non-diabetic and
Figure 1. Analysis of the Doppler spectrum.

(a) Normal (triphasic) Doppler waveform with peak systolic velocity (PSV), acceleration time (AT) from the beginning to the peak of the systole and the systolic velocity gradient (ΔV_{sys}). The maximal systolic acceleration (ACC_{max}) is defined as the maximum slope of the acceleration phase in the Doppler curve. AT_{max} is the elapsed time and ΔV_{max} is the velocity gradient between the beginning and end of the maximal acceleration phase (grey area). $ACC_{max} = \Delta V_{max}/AT_{max}$.

(b) Example of an abnormal (monophasic) Doppler waveform. The maximal systolic acceleration (ACC_{max}) in the more uniform initial part of the systolic Doppler curve (grey area) is higher than the mean systolic acceleration (ACC_{sys}), which is the slope of curve from the beginning of the systolic upstroke to the peak of the systole ($ACC_{sys} = \Delta V_{sys}/AT$).

diabetic group separately. Again, if ABI was ≥ 1.30 in the diabetic group, TBI was used to assess the relationship with ACC_{max}. We studied a linear, a quadratic and a logarithmic relation, using ACC_{max}, $ACC_{max} + (ACC_{max})^2$ and $\log(ACC_{max})$, respectively, as predictors. Since the number of regression parameters is not the same in these three models the adjusted R^2 was used to determine the optimal form of association. Further, in a multiple linear regression model with patient group (non-diabetic, diabetic with ABI and diabetic with TBI) as complementary predictor, it was studied whether the corresponding ABI (or TBI) in the diabetic group was systematically higher or lower. Tests were performed using SPSS 14.0 for windows (SPSSinc., Illinois, CA, USA).

Results

A total of 163 consecutive patients were referred to the vascular laboratory for non-invasive arterial assessment of the lower extremity during the 12-months period. Three patients were excluded because no reliable distal pressure measurements could be obtained: ABI values were higher than 1.30 and TBI was technically not feasible. The severity of ischemic disease, vascular risk factors and relevant comorbidity of the patients...
are summarized in Table I. Due to the presence of ulcers or a history of amputation exclusively unilateral assessment was performed in 19 cases. In 71% of limbs the higher ABI was obtained from the posterior tibial artery and 29% from the dorsal pedal artery. In the group of non-diabetic patients, 166 limbs were examined. ABI ranged from 0.26 to 1.26. Values were found to be within the definition of PAOD in 87 of the 166 limbs (52%). The group of patients with diabetes consisted of 73 patients. ABI ranged from 0.19 to 1.23 in 75 limbs. In 60 limbs with ABI values ≥1.30, TBI ranged from 0.23 to 0.98. Seventy-nine of 135 examinations revealed a value indicating PAOD (59%). Distribution of corresponding ACC_max values for the several patient categories is shown in Figure 2.

Table I. Patient characteristics and severity of ischemic disease.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>N = 160 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yrs, mean ± SD)</td>
<td>66 ± 17</td>
</tr>
<tr>
<td>Male sex</td>
<td>107 (67)</td>
</tr>
<tr>
<td>Smoking</td>
<td>99 (62)</td>
</tr>
<tr>
<td>Hypertension</td>
<td>60 (38)</td>
</tr>
<tr>
<td>Hyperlipidemia</td>
<td>41 (26)</td>
</tr>
<tr>
<td>Cardiac disease</td>
<td>36 (22)</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>50 (31)</td>
</tr>
<tr>
<td>Fontaine classification:</td>
<td></td>
</tr>
<tr>
<td>I: asymptomatic</td>
<td>25 (16)</td>
</tr>
<tr>
<td>II: claudication</td>
<td>90 (56)</td>
</tr>
<tr>
<td>III: ischemic rest pain</td>
<td>23 (14)</td>
</tr>
<tr>
<td>IV: tissue loss</td>
<td>22 (14)</td>
</tr>
</tbody>
</table>

Table II. Probability values of various thresholds of ACC_max for the establishment of peripheral arterial disease, defined as ABI ≤0.90.

<table>
<thead>
<tr>
<th>ACC_max (m/s²)</th>
<th>Se (%)</th>
<th>Sp (%)</th>
<th>PPV (%)</th>
<th>NPV (%)</th>
<th>Ac (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤5.85</td>
<td>76</td>
<td>100</td>
<td>100</td>
<td>81</td>
<td>88</td>
</tr>
<tr>
<td>≤6.45</td>
<td>81</td>
<td>99</td>
<td>99</td>
<td>84</td>
<td>90</td>
</tr>
<tr>
<td>≤8.45</td>
<td>92</td>
<td>87</td>
<td>87</td>
<td>91</td>
<td>89</td>
</tr>
<tr>
<td>≤10.1</td>
<td>96</td>
<td>63</td>
<td>72</td>
<td>95</td>
<td>80</td>
</tr>
</tbody>
</table>

Se=Sensitivity; Sp=Specificity; PPV=Positive predictive value; NPV=Negative predictive value; Ac=Accuracy

Receiver operating characteristic analysis

Including all 166 legs of patients without diabetes, sensitivities, specificities, PPV, NPV and accuracies of various ACC_max cut-off values for the detection of PAOD (ABI ≤0.90) are shown in Table II. Values were calculated by ROC curve analysis (Figure 4). The highest accuracy (90%) was provided by an ACC_max ≤6.45. The highest negative predictive value (95%) was provided by an ACC_max ≥10.1 where ACC_max ≤6.45 provides a positive predictive value of 99% and adequately predicts PAOD. Practical thresholds useful for screening purposes are ACC_max >10 and <6.5. Table III shows how these intervals relate to the ABI cut-off value.
for the presence of PAOD. Measuring an $\text{ACC}_{\text{max}} > 10$ practically excludes the presence of PAOD and patients with an $\text{ACC}_{\text{max}} < 6.5$ are very likely to have PAOD.

Association between ABI and ACC_{max}

Figure 2. Association between ACC_{max} and ABI.

(a) In patients without diabetes, a quadratic model demonstrated the strongest association with an adjusted R^2 of 0.85. (b) In diabetic patients (ABI < 1.3), a quadratic model also revealed the strongest association with an adjusted R^2 of 0.81. (c) In diabetic patients (ABI ≥ 1.3 and therefore TBI measurement), a quadratic model revealed the strongest association with an adjusted R^2 of 0.79.

$\text{ACC}_{\text{max}} =$ Maximal systolic acceleration; ABI = Ankle-brachial index; TBI = Toe-brachial index.

The association between ABI and ACC_{max} in the non-diabetic patient group was assessed by linear regression. Adjusted coefficient of determination (R^2) values of 0.76, 0.79 and 0.85 were obtained for respectively linear, logarithmic and quadratic associations. So, the strongest association was established by a quadratic relationship. In diabetic patients the quadratic association also produced the best adjusted R^2 value: 0.81 and 0.79 in case of ABI and TBI measurement respectively. (Figure 2). Assuming a parallel course of the 3 curves, a multiple regression model with ACC_{max} and the 3 patient groups as predictors, showed that the diabetic patients presented for a given ACC_{max} value on average a 0.053 higher ABI value, supporting falsely elevated ABI also when values are lower than 1.3 ($p<0.001$, figure 3). Furthermore, in the diabetic subgroup of patients with TBI measurements, for any given ACC_{max} on average a 0.27 lower TBI value was obtained ($p<0.0001$).
Discussion

In case of reduced vessel compliance, an accurate, simple, and rapid alternative technique which can reliably determine the presence or absence of significant PAOD and predict its severity is highly desirable. The current study shows that ACC\(_{\text{max}}\) seems to be a useful technique for the diagnosis of PAOD in diabetic patients, especially since we confirm ABI measurements to be significantly elevated in diabetic patients over the whole range. The clinical relevance of ACC\(_{\text{max}}\) is provided by the strong association with ABI values, as pressure measurement is important in the detection of significant PAOD, and offers prognostic data that are primarily useful to predict (limb) survival.\(^1,20\) Furthermore ABI can be used to monitor efficacy of therapeutic interventions.\(^10\)

As long as ABI is not obviously falsely elevated (i.e. \(\geq 1.3\)), it provides as much information as TBI and can be relied upon in clinical decision making.\(^22\) Toe pressures and the toe-brachial indices are commonly advocated in diabetic patients if ABI is greater than 1.3 because digital arteries are assumed to be less affected by medial calcification.\(^10,22\) However, certainly in case of concomitant neuropathy, digital arteries may also be calcified in diabetic patients and consequently have reduced compressibility to some extent.\(^21\) Moreover, measurement of toe pressure is technically more demanding, time consuming and even may be impossible due to inflammatory lesions, ulceration or tissue loss.\(^22\) Kröger et al. reported that toe pressure assessment was not feasible with Doppler technique in even 21 of 50 diabetic patients and still in 5 patients after measurement with optical sensors.\(^23\) In the present study TBI assessment appeared technically not possible in 6 of 72 limbs (36 diabetic patients with ABI \(\geq 1.30\)). Regarding other non-invasive alternative modalities that might be used in individuals with noncompressible vessels, pulse volume recording (PVR) lacks accuracy in distal segments\(^10\) and transcutaneous oximetry (TcPO2) has been questioned because of its reproducibility, accuracy and the controversy about the influence of medial calcification on TcPO2 measurements.\(^24,25\)

Since the introduction of DUS into the field of PAOD, criteria used for diagnosing PAOD are usually based on direct assessment of the peak systolic velocity (PSV) and ratio between PSV upstream and downstream from a stenosis. These velocity parameters are highly accurate for assessing PAOD in angiographic controlled studies, but also time-consuming, not always assessable and less sensitive in the presence of multiple lesions.\(^26-29\) Various strategies to improve the accuracy have been evolved by proposing other velocimetric parameters derived from distal Doppler waveforms. This indirect assessment of vascular segments has been studied for both qualitative\(^11-14\) and quantitative parameters such as pulsatility index\(^15,30\), maximum reverse flow\(^15,30,31\), resistance index\(^16\), acceleration time\(^16,17,30,32\), end-diastolic velocity\(^15\) and mathematical techniques, i.e. Laplace\(^23\) and Fourier transform.\(^34\) Despite good agreement, only few of these methods are embodied in the routine clinical practice, probably because of complexity or need for additional equipment. Furthermore, the assessed segment in these studies was the aortoiliac
region. In fact few studies have analyzed Doppler spectral analysis obtained from distal arteries for evaluating PAOD. Bishari et al. found a good correlation (R=0.77) between PSV values at the ankle and clinical presentation (Rutherford classification) in 25 patients. Furthermore, wide variations of the ankle-brachial acceleration ratio in comparison with ABI were reported by Forsberg, however using *mean systolic acceleration*.

Doppler-derived *maximal systolic acceleration* (ACC$_{\text{max}}$) of the crural/pedal arteries has not been studied earlier. Bardelli et al. found ACC$_{\text{max}}$ values to be highly predictive in the assessment of renal artery stenosis. Analogous to his method we measured the acceleration in the more uniform initial part of the systolic Doppler curve because the shape of the Doppler curve even varies between normal arteries (figure 1).

Figure 3. Association between ACC$_{\text{max}}$ and ABI / TBI in patients with and without diabetes.

The o-line representing non-diabetic group and ◊ and □-lines representing the diabetic group. In a multiple regression model, diabetic patients had for any given ACC$_{\text{max}}$ value on average a 0.053 higher ABI value (p<0.001). If ABI \geq1.30 and therefore TBI was used, for any given ACC$_{\text{max}}$ on average a 0.27 lower TBI value was obtained (p<0.0001).

ACC$_{\text{max}}$=Maximal systolic acceleration; ABI=Ankle-brachial index; TBI=toe-brachial-index. (◊ = ABI ; □= TBI).

When ACC$_{\text{max}}$ is considered for identifying PAOD, a high negative predictive value is very important. Calculating the ideal cut-off value by means of ROC curve, an ACC$_{\text{max}}$ $>$10 was found highly predictive (95%) for selecting individuals without significant PAOD. Table III shows a discrepancy in only 3 patients by applying an ACC$_{\text{max}}$ $>$10, all having a borderline ABI value of respectively 0.84, 0.87 and 0.90. In addition, ACC$_{\text{max}}$ $<$6.5 identifies individuals suffering from PAOD with high certainty (99%).
Patients can be initially evaluated by \(\text{ACC}_{\text{max}} \). In the present study, patients with an \(\text{ACC}_{\text{max}} \) value between 6.5 and 10 still have a 30% risk of having an ABI \(\leq 0.90 \). A strategy of screening patients by means of \(\text{ACC}_{\text{max}} \) and subjecting only those to complete DUS scanning if \(\text{ACC}_{\text{max}} \) is not definitive, will be more effective and time-saving. As noted before the current noninvasive tests for assessing the severity of PAOD in the diabetic population are less reliable. The results in the present study confirm the view that arteries of patients with diabetes are less compressible than the arteries of their non-diabetic counterparts. Moreover, ABI values in diabetic patients are falsely elevated due to some degree of arterial calcifications over the whole range, not only if ABI \(\geq 1.30 \). The clinical consequence can be that in patients with diabetes significant PAOD is missed or assessed more optimistically. In our study only one non-diabetic patient had a normal ABI value with a corresponding \(\text{ACC}_{\text{max}} \) < 6.5 (Table III) and would thus potentially be missed. In the diabetic group however, in 39 of 135 limbs \(\text{ACC}_{\text{max}} \) < 6.5 was paralleled by an ABI value > 0.90.

Table III. Two-way contingency table comparing the presence or absence of PAD defined as ABI \(\leq 0.90 \) versus > 0.90 with the suggested \(\text{ACC}_{\text{max}} \) cut-off values.

<table>
<thead>
<tr>
<th>(\text{ACC}_{\text{max}}) (m/s²)</th>
<th>(\leq 0.90)</th>
<th>>0.90</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td><6.5</td>
<td>66</td>
<td>1</td>
<td>67</td>
</tr>
<tr>
<td>6.5-10</td>
<td>13</td>
<td>30</td>
<td>43</td>
</tr>
<tr>
<td>>10</td>
<td>3</td>
<td>53</td>
<td>56</td>
</tr>
<tr>
<td>Total</td>
<td>82</td>
<td>84</td>
<td>166</td>
</tr>
</tbody>
</table>

The association between \(\text{ACC}_{\text{max}} \) and the ABI provides an accurate method to predict the ABI by curve interpolation, as shown in figure 2a. Because the same association is found in patients with diabetes (with a higher constant due to higher degrees of medial calcification) \(\text{ACC}_{\text{max}} \) measurement is very suitable to assess the severity of PAOD in patients with diabetes. The same criteria as in patients without diabetes are applicable. In theory, when \(\text{ACC}_{\text{max}} \) drops, ABI should approximate zero and the curve should cross the origin of both axes. This discordance in our data could possibly be explained by lacking sensitivity of the ABI measurement in the lower zone.

The present study has several limitations that need to be addressed. Using ABI as gold standard reference can be criticised because of its well documented variation and the fact that stiffened arteries due to calcification can also be observed in non-diabetic patients. However, indirect pressure measurements with Doppler correlate well with intra-arterial measurements 38 and angiographic extent of lower limb atherosclerosis in large series of cases 39,40. Besides, Doppler waveforms have the ability to recover if sufficient collaterals have developed.11,41 So, assessing distal waveform parameters might underestimate angiographic proven stenoses. However, this restriction also applies to ABI measurement,
providing functional information about the presence and severity of PAOD rather than anatomical information provided by angiography. Since single measurements were accomplished by a single vascular technologist, no data can be provided on the variation of ACCmax. In general, the reproducibility of duplex scanning is moderate to good whereas variation in ABI measurement can be approximately 15%.42,43

In conclusion, ACCmax can serve as an accurate marker of peripheral arterial occlusive disease. In absence of reliable ABI measurement, ACCmax is a useful technique in diabetic patients. In view of the strong association between ACCmax and ABI, the severity of PAOD can be reliably estimated by this parameter. In addition to being non-invasive, inexpensive and accurate this new acceleration parameter is easily obtained from the ankle arteries without need for additional equipment, technical skills or difficult mathematical calculations, reducing time needed for assessing the entire lower limb for PAOD independent of the presence of diabetes.

Figure 4. ROC curve to show the predicted ability of ACCmax.
References