CHAPTER 10

TUCKALS3
Three-Mode Principal Component Analysis

Kroonenberg P.M.
TUCKALS3 is a program to perform three-mode principal component analysis. The technique was developed by Tucker (1966), and improved estimation procedures were devised by Kroonenberg & De Leeuw (1980), and Weesie and Van Houwelingen (1985). The former technique has been fully described in Kroonenberg (1983a) and an annotated bibliography is Kroonenberg (1983b).

Three-mode principal component analysis is a technique to deal with data which can be classified by three kinds of entities (called modes), say subjects, variables, and occasions. These terms should be considered generic, rather than specific ones. Three-mode data can be arranged into a three-dimensional block or array X. The three modes will be called A, B, and C, respectively (see Figure 1). The orders of X are I, J, and K (upper case), and i, j, and k (lower case) are the indices for the elements of the respective modes.

![Data matrix X](image)

Figure 1 Data matrix X
A three-mode matrix can be seen as composed of two-mode submatrices called *slices*, and of one-mode submatrices (or vectors), called *fibers*. These two-way submatrices will be referred to as *frontal slices*, *horizontal slices*, and *lateral slices* (Figure 2). The fibers will be called *rows*, *columns*, and *tubes* (Figure 3). Throughout this text X_k will denote the k-th of K frontal slice of X.

Figure 2 Slices, the two-way submatrices of X

Figure 3 Fibers, the one-way submatrices of X
The matrices of component loadings are named after the modes they refer to, but as usual, the names of vectors and matrices are printed in bold face. Thus A is the component matrix for Mode A and so on. The core matrix is denoted by G. The terminology presented here is largely based on Harshman and Lundy (1984a,b). The only difference lies in the choice of A and B. Harshman and Lundy call Mode B what is called Mode A here, and vice versa.

1. Characteristics of input data.

TUCKALS3 is a three-mode program which is primarily geared towards metric three-way three-mode data, which are fully crossed with respect to all modes. There are no special provisions for conditionality, nor for missing data. The program may be used for three-way two-mode data, such as multiple covariance matrices or (double-centred) (dis)similarity matrices. In the latter case it is implicitly assumed that the dissimilarities are equal to squared distances rather than ordinary distances. If this is unacceptable, corrections should be made before the analysis proper. Three-way interactions from analysis of variance or loglinear analyses may also be used as input. There are no specific provisions in the program for nonmetric data, such as optimal scaling or similar procedures for handling ordinal or nominal data.

2. Data manipulation.

Several centring options can be performed in the program, primarily on frontal slices of the three-way matrix, such as centring rows, columns or frontal slices, and standardization of frontal slices, but the program is not specifically geared towards comprehensive data manipulation. In practice, the centring options suffice for most data sets, especially as by transposing the data matrix all desired centring options can be performed. Centring on three modes at the same time is seldom necessary. However, for full data manipulation, the program NDISMIS3 by Brouwer (1985) or Harshman and Lundy's PARAFAC (q.v.) can be used; they contain most of the desired options for centring and standardization. The latter program includes an (iterative) standardization procedure for simultaneously standardizing two or three modes.
3. Mathematical models

The program handles the Tucker3 model, in which orthonormal components are computed for each of the three modes. The weights for combinations of components of the three modes are computed as well. They form together the core matrix G which has orders equal to the number of components of each mode, i.e. $P \times Q \times R$.

The model is formally described as

$$x_{ijk} = \sum_{p=1}^{P} \sum_{q=1}^{Q} \sum_{r=1}^{R} a_{ip}b_{jq}c_{kr}g_{pqr} + e_{ijk}$$

where $i=1,..,I$, $j=1,..,J$, and $k=1,..,K$; $P,Q,$ and R are the number of components in each mode, and $A = (a_{ip})$, $B = (b_{jq})$, and $C = (c_{kr})$ are the component matrices of the first, second, and third mode respectively. $G = (g_{pqr})$ is the $P \times Q \times R$ core matrix, and $E = (e_{ijk})$ the three-mode matrix with errors of approximation. A matrix formulation of the model is either

$$X = AG(B' \otimes C') + E$$

using the Kronecker product (\otimes), or

$$X_k = AH_kB' + E_k, \quad k=1,...,K$$

in which the H_k, the individual characteristic matrices are equal to a linear combination of the R frontal slices, G_r, of the core matrix

$$H_k = \sum_{r=1}^{R} e_{kr}G_r.$$

When instead of direct fitting of the original data, indirect fitting is used for cross-product or covariance matrices, mostly A and B will become identical or sign permuted versions of each other, and the matrix C has in that case strong similarity to the compromise matrix in STATIS (q.v).

The model is essentially non-stochastic and data-analytic. It suffers from rotational indeterminacy of the components, but this indeterminacy allows for a nonrestricted, easy to fit, model. The indeterminacy implies that after a solution is obtained the orthonormal solution may be transformed in several ways without loss of fit, if the appropriate inverse transformations are applied as
well. The program itself has no transformational capabilities, but transformed solutions can be reintroduced into the program to evaluate especially the core matrix after transformation, but also the effect of the transformations on the redistribution of variability over the components can be assessed.

4. Optimization algorithm

The estimation of the Tucker3 model is achieved via an alternating least squares algorithm which minimizes the loss function

\[\| \mathbf{X} - \mathbf{A} \mathbf{G} (\mathbf{B'} \otimes \mathbf{C'}) \|^2. \]

The minimization problem can be reduced by solving first for \(\mathbf{G} \) as \(\mathbf{G}^* = \mathbf{A}' \mathbf{X} (\mathbf{B} \otimes \mathbf{C}) \), and substituting \(\mathbf{G}^* \) into the loss function to obtain

\[\| \mathbf{X} - \mathbf{A} \mathbf{A}' \mathbf{X} (\mathbf{B} \otimes \mathbf{C}) (\mathbf{B'} \otimes \mathbf{C'}) \|^2 \]

This last loss function can be solved via cyclically estimating \(\mathbf{A} \) for fixed \(\mathbf{B} \) and \(\mathbf{C} \), followed by \(\mathbf{B} \) for fixed \(\mathbf{C} \) and \(\mathbf{A} \), and then \(\mathbf{C} \) for fixed \(\mathbf{A} \) and \(\mathbf{B} \), etc. Each subproblem is an eigenvalue-eigenvector problem of a dimension equal to the number of components for the mode in question, and it can be handled efficiently by using a Jacobi procedure embedded in Bauer-Rutishauser's simultaneous iteration method.

To start iterations, the solutions obtained via Tucker's Method I are used, which will already provide the solution if an exact solution exists. As in virtually all problems of this kind, only convergence to a local minimum is assured, however, the specific initial configuration has shown to steer the algorithm in the proper direction. The general impression is that local minima do not form a serious problem.

5. Results

The primary output of the program consists of the following parts

1. The information on the overall fit of the model, and several partitionings of this fit by the elements (i.e. variables, subjects, occasions) of each mode, as well as by the component combinations via the core matrix;

2. Components scaled in several ways;
3. Core matrix scaled in several ways;

 Optional supplementary information includes

4. Input data;

5. (Optionally) removed means and scale factors, and scaled data;

6. Initial configurations;

7. Iteration history;

8. Residuals, fitted data, squared residuals;

9. Analysis of variance of squared residuals;

10. Joint plots of any two modes;

11. Distances (inner products) of points in joint plots, which are equal to component scores;

12. Many plots can be produced to visually inspect the solutions;

13. Coordinates of components and joint plots, core matrix, (squared) residuals, fitted data, and fits per element can be written to external units;

14. External configurations can be read in to restart analyses, to evaluate results from other studies, to evaluate component spaces after transformation, to construct core matrices for PARAFAC components (as in PFCORE, q.v.).

The program was originally written in portable FORTRAN-IV, but was adapted to FORTRAN77. It is designed for main frames, and it runs satisfactorily on machines like the IBM8083, CDC, Fujitsu, and under UNIX on Perkin Elmer and MicroVAX, and other machines.

The program has an option for dynamic array allocation and accordingly its size depends on the variable array size. The program itself is approximately 230K, and the variable array size depends on I, J, K, P, Q, and R. If no dynamic array allocation is used, the standard array space is 120K, which can easily be enlarged by changing only a few statements. A problem of 160 by 12 by 8 with 3*3*2 components runs in 712K memory, and a 12 by 12 by 11 with 4*4*2 components in 248K memory.

The input is based on fixed column entry, and the program has an editing
facility for checking the input parameters without execution. The echo of the input parameters is at the same time a complete input description.

It is contemplated to extend the program to provide options for producing output in accordance with other standard programs for three-mode analysis, such as PARAFAC and STATIS. Further possible developments consist of porting the program to microcomputers by rewriting it into C, including some transformational procedures on both the components and the core matrix, including the Weesie and Van Houwelingen algorithm to allow for missing data, and possibly extending the program to handle four modes.

The program is available from the author (P.M. Kroonenberg, Department of Education, University of Leiden, P.O. Box 9507, 2300 RA Leiden, The Netherlands), and the costs are US$150. Further details can be obtained from the above address.

7. Documentation

User's guide

Technical references

Applications
