Trisomy 13 correlates with RUNX1 mutation and increased FLT3 expression in AML-M0 patients

Fernando PG Silva, Alexandra Lind, Geeske Brouwer-Mandema, Peter JM Valk & Micheline Giphart-Gassler

Haematologica 2007;92:1123-1126
Abstract

Of 52 AML-M0 patients studied, 16 presented a \textit{RUNXI} mutation (30.8\%) and 8 carried a trisomy 13 (15\%). We found a strong correlation between trisomy 13 and \textit{RUNXI} mutations, i.e., 7 out of 8 cases with trisomy 13 carried a mutation in \textit{RUNXI} (87.5\%, \(P < 0.00056 \)). Trisomy 13 patients with a RUNX1 mutation showed a 4-fold higher expression of \textit{FLT3} mRNA compared to the controls, and in a selected number of cases, a higher cell fraction expressing FLT3 and an increase in the number of FLT3 receptors at the cell surface. In conclusion, our results show that trisomy 13 is correlated to \textit{RUNXI} mutation and increased \textit{FLT3} expression in AML-M0.

Keywords: acute myeloid leukemia; trisomy 13; \textit{RUNXI}; \textit{FLT3}; AML-M0
Introduction

Trisomy 13 is a recurring but rare chromosomal abnormality in acute myeloid leukemia (AML).1-4 It frequently occurs as the sole karyotypic anomaly. Several studies have shown an association between trisomy 13 and morphologic and immunophenotypic undifferentiated leukemia, in particular within the rare FAB subgroup AML-M0.1-7 The majority of cases with trisomy 13 show low remission rates.2,3,6,8 The biological consequence of an additional copy of chromosome 13 in AML is unknown and has not been addressed yet. The mechanism by which trisomies contribute to neoplasia is commonly assumed to be an increase in gene expression of one or several genes resulting from the gain in copy number. The fms-like tyrosine kinase 3 gene encoding FLT3 (CD135), a class III receptor tyrosine kinase expressed in immature hematopoietic cells and located on chromosome 13, is a good candidate for dose deregulation. Internal tandem duplication (ITD) of the juxtamembrane domain or point mutation in the activation loop domain of FLT3 are frequent events in AML and result in constitutive activation of this tyrosine kinase.9-11 Interestingly, it has been shown that AML patients with elevated levels of wild-type FLT3 also have constitutive activation of the receptor, which may be associated with poor response to treatment.12 We screened a cohort of 52 AML-M0 patients for several common mutations in AML. Of these patients, 8 had a gain of chromosome 13. Here we show correlation of trisomy 13 with \textit{RUNX1} mutation and increased \textit{FLT3} expression in AML-M0 patients.

Results and discussion

We screened 52 AML-M0 patients for mutations in \textit{RUNX1} (exons 3, 4 and 5), \textit{FLT3} (ITD and D835), \textit{N} and \textit{KRAS, PTPN11} and \textit{JAK2} (chapter 3). We found \textit{RUNX1} mutations in 16 patients (30.8%) and \textit{FLT3, RAS, PTPN11} or \textit{JAK2} mutations in 22 patients of the cohort. \textit{FLT3} ITD mutations were detected in 2 out of 16 patients with \textit{RUNX1} mutation. Of the 52 patients, material from 8 patients showed extra copies of chromosome 13 (15%, Table 1), a high percentage in agreement with published reports.4,6,7 Seven out of the 8 patients with trisomy 13 (87.5%) showed mutations in \textit{RUNX1} (Table 1), while 7 out of the 16 patients (44%) with a \textit{RUNX1} mutation had trisomy 13. Statistical analysis (one-sided Fisher’s exact test) showed that trisomy 13 and \textit{RUNX1} mutation co-occurred more frequently than expected by chance (P < 0.00056). Conversely none of the trisomy 13 AML patients showed mutations in \textit{FLT3, RAS, PTPN11} or \textit{JAK2}, with the exception of patient 30 who had a mutation in \textit{PTPN11}. A negative correlation between \textit{FLT3} mutation and trisomy 13 has been reported before.13 Our results are supported by a substantial co-occurrence of \textit{RUNX1} mutation and trisomy 13 found in literature, as of 26 samples with \textit{RUNX1} mutation and a known karyotype, 5 also had trisomy 13 (19.2%).14 It has been hypothesized that two classes of mutations, differentiation and proliferation, are necessary and sufficient to lead to leukemogenesis.11 Therefore, given the known role in AML, \textit{FLT3}, located on chromosome 13, is a very likely candidate for deregulation as a result of trisomy 13.

\textit{FLT3} mRNA expression was studied in 6 of 8 patients (Table 1) with trisomy of chromosome 13. \textit{FLT3} expression was significantly and consistently 3-fold higher in
the trisomic samples compared to a mixed panel of AML-M0 controls (Figure 1A). To test how specifically FLT3 expression was affected we used the neighboring CDX2, P4N3 and FLT1 genes and FOXO1A (also on chromosome 13) as controls. FOXO1A as been reported to be over-expressed in AML15 while CDX2, P4N3 and FLT1 were found amplified in a small chromosome 13 region in three AML patients.15 FOXO1A and P4N3 expression was not increased in the trisomic samples compared with the controls (Figure 1A). FLT1 expression was not detected in any of the cases and CDX2 expression was restricted to a fraction of the patients without correlation to trisomy 13 (data not shown). These results argue in favor of a specific deregulation of FLT3 beyond dose effect.

Table 1. Karyotype and RUNX1 mutation status

<table>
<thead>
<tr>
<th>Patient</th>
<th>Karyotype</th>
<th>RUNX1 mutation</th>
<th>FLT3 ITD and D835 mutations</th>
</tr>
</thead>
<tbody>
<tr>
<td>7a</td>
<td>47,XY, +13, I(17)(q10)</td>
<td>W79C (H)</td>
<td>wt</td>
</tr>
<tr>
<td>27a</td>
<td>n.d.b</td>
<td>R80H (H)</td>
<td>wt</td>
</tr>
<tr>
<td>30a</td>
<td>47,XY,+13</td>
<td>W79C (H)</td>
<td>wt</td>
</tr>
<tr>
<td>31a</td>
<td>96,XXY,+13, +13,der(17)(t(16;17)(p11;p11)x2, +19;+19</td>
<td>A115fs (h)</td>
<td>wt</td>
</tr>
<tr>
<td>32a</td>
<td>47,XY,+13</td>
<td>D171V (H)</td>
<td>wt</td>
</tr>
<tr>
<td>36a</td>
<td>47,XY,+13</td>
<td>R142fs (h)</td>
<td>wt</td>
</tr>
<tr>
<td>46</td>
<td>47,XX,+13,16qh+c</td>
<td>Not detected</td>
<td>wt</td>
</tr>
<tr>
<td>53</td>
<td>46,XY,der(13)(t(13;21)(q32~34;q22), +der(13),-21b</td>
<td>Total Deletionc (H)</td>
<td>wt</td>
</tr>
</tbody>
</table>

All trisomies confirmed by SNP analysis. a) used for FLT3 Real Time PCR quantification; b) +13 detected with SNP arrays; c) detected with SNP arrays (H) – homozygous; (h) – heterozygous; wt – wild type

This study has shown trisomy 13 to be strongly correlated to RUNX1 mutation. Therefore, we also evaluated whether RUNX1 mutation per se was sufficient for increased FLT3 expression. AML-M0 patients with a RUNX1 mutation and without trisomy 13 had a consistent 2-fold higher FLT3 expression compared to the AML-M0 controls (Figure 1B). Cases with both trisomy 13 and RUNX1 mutation show a statistically significant 4-fold increase in FLT3 expression (Figure 1B). The increased fold change associated with RUNX1 mutation alone also explains the difference between the fold changes detected between experiments in the trisomy 13 samples (3- versus 4-fold, Figure 1A versus Figure 1B), as patients with RUNX1 mutations where included in the control panel of the first experiment. Clearly, neither RUNX1 loss nor trisomy 13 can solely account for a 4-fold increase in FLT3 expression in these patients. Although there could be several explanations, it is possible that trisomy 13 and RUNX1 loss have a synergistic effect on FLT3 expression in these cases. This could also account for the specificity of FLT3 up-regulation when compared to FOXO1A and PAN3. In three cases with FLT3 ITD and one with FLT3 D835 but without trisomy 13, expression of FLT3 was not increased, adding to the conflicting data that exist regarding the increase in FLT3 expression in FLT3 mutated cases (Figure 1B).12,16
Trisomy 13 in AML-M0 with RUNX1 mutation

Figure 1. FLT3 expression in patients with AML-M0, trisomy 13 and RUNX1 mutation. A) Expression of FLT3, FOXO1A and PAN3 in 6 patients with trisomy 13 and RUNX1 mutation compared to an AML-M0 patient control panel. The control panel consisted of AML-M0 patients with RUNX1 mutation (2), FLT3 mutation (2), both (1) and neither (1). Statistics were determined by one tailed Student’s t-test, assuming equal variance. Data are expressed as indicated in median ± standard error. B) Median FLT3 expression in AML-M0 patients with trisomy 13 and RUNX1 mutation (6 patients), RUNX1 mutation (6 patients) and FLT3 mutation (3 ITD and 1 D835 patients) compared with an AML-M0 control panel (4 patients) without any of the aforementioned anomalies. Normalization and statistics were performed as in panel A. C) FLT3 and KIT protein expression in the tumor population (CD34+) as determined by flow cytometry. Controls consist of AML-M0 patients without FLT3 mutation (Control 1 and 2), with FLT3 ITD mutation (ITD 1 and 2) and with FLT3 D835 mutation (D835). No RUNX1 mutations were detected in these controls. D) Median fluorescence intensity of cells expressing FLT3. Controls as in panel C.

We were able to study FLT3 protein expression in two patients (27 and 31) with trisomy 13 using FACS. The analysis was restricted to the CD34 expressing cell population. As FLT3 and KIT are co-expressed in normal CD34+ bone marrow cells we also studied KIT expression. The cell fraction expressing FLT3 is much higher in patients 27 and 31 than in any of the AML-M0 controls (P < 0.0026, t-test, Figure 1C). Also the FLT3+/KIT- fraction in these two patients was higher (P < 0.0038, t-test) and seemed to negatively correlate with the FLT3-/KIT+ population. Finally, we studied the median fluorescence intensity of FLT3 as an indicative of the number of receptors at the cell surface. In patients carrying a trisomy 13 (27 and 31) the median fluorescence intensity of the FLT3 positive population was considerably higher than in the controls (Figure 1D, P < 0.0086, t-test). Correlation between FLT3 mRNA expression and protein expression at cell surface has been published before, although there are conflicting data. A role for high FLT3 expression in AML leukemogenesis has been hypothesized. In some cases over-expression of FLT3, at levels comparable with this study, was shown to result in auto-activation of this receptor. From a mechanistic point of view, it is tempting to speculate that over-expression of normal
FLT3 receptor, activated either by ligand or by auto-phosphorylation, is comparable to \textit{FLT3} mutations. Within this context trisomy 13 would be an alternative to \textit{FLT3} ITD and D835 mutations. This hypothesis would explain the lower frequency of overlapping \textit{FLT3} and \textit{RUNX1} mutations found by us compared to another study,18 as this study has lower incidence of trisomy 13 than expected.4,6,7 A high frequency and correlation of trisomy 13 and \textit{RUNX1} mutations has been recently reported in an abstract including AML subtypes other than M0,19 suggesting that this might be a general mechanism for leukemia in AML. In conclusion, we have shown that trisomy 13 is highly correlated with \textit{RUNX1} mutation and that \textit{FLT3} mRNA expression is greatly increased in tumor cells from AML-M0 patients where both abnormalities occur. The high \textit{FLT3} mRNA expression translates into a marked increase in both the cell fraction expressing FLT3 as well as the number of FLT3 receptors at the cell surface in at least two patients. Given the function of FLT3, its involvement in AML and the distribution with other mutations, our data suggest that up regulation of \textit{FLT3} may play an important role in AML-M0 with trisomy 13 and \textit{RUNX1} mutation.

\textbf{Material and methods}

\textit{Patient material}

Patient material, morphologically and immunophenotypically classified as AML-M0, was kindly provided by JC Kluiin-Nelemans, University of Groningen, The Netherlands, B. Löwenberg, Erasmus University Medical Center, Rotterdam, The Netherlands, W-D Ludwig, Medical University of Berlin, Germany, WAF Marijt, Leiden University Medical Center, The Netherlands and WR Sperr, Medical University of Vienna, Austria. Pure tumor populations were obtained by sorting mononuclear cells using flow cytometry as previously described.20 DNA and RNA were isolated using commercially available kits (Qiagen, Hilden, Germany).

\textit{Mutation screening}

\textit{RUNX1} mutation screening was performed as previously described.20 Conditions and primer sequences for \textit{FLT3} ITD and D835 mutation screening are described in the online Supplementary Appendix (Haematologica web site).

\textit{FLT3 expression}

Primer sequences and detailed conditions used for Quantitative real-time PCR (qPCR) are described in the online Supplementary Appendix. Normalization of the results was done using the geometrical mean of the housekeeping genes \textit{GAPDH}, \textit{HPRT} and \textit{YWHAZ}. The control panels consisting of cDNA from AML-M0 patients are described in the legend of Figure 1. For flow cytometric analysis monoclonal antibodies anti-CD34 (Becton Dickinson, San Jose, CA), anti-CD117 (Dako, Glostrup, Denmark), anti-CD135 (Immunotech, Marseille, France) and anti-CD45 (Becton Dickinson) were used. Antibodies were FITC, APC, PE and PERCP conjugated, respectively. The antibodies were added to 5×10^5 mononuclear cells and incubated for 30 minutes in 100 \textmu l PBS containing 0.1 \% BSA. After washing, the cells were resuspended in 500 \textmu l PBS containing 0.1 \% BSA. Flow cytometry analysis was performed using a FACSCalibur (Becton Dickinson).
Acknowledgements

We thank R van der Linden for technical advice on flow cytometry data analysis and RS Jahangir Tafrech for advice on qPCR. We would also like to thank our colleagues from the Toxicogenetics Department for critical reading. This work was supported by grants from the Calouste Gulbenkian Foundation and the Foundation for Science and Technology (Portugal) to FPG Silva.

Reference list
