Chapter 7

CD20 epitope masking by rituximab

Teng YKO
Ioan-Facsinay A
van Laar JM

Arthritis & Rheumatism 2008; 58: 634-636
Rituximab, an anti-CD20 B-cell depleting monoclonal antibody (mAb), is increasingly used in the treatment of refractory autoimmune diseases, such as rheumatoid arthritis1,2 and systemic lupus erythematosus3. Mouse anti-human mAb against the pan-B-cell markers CD20 and/or CD19 are generally used for flow cytometric and immunohistochemical analyses of blood and tissue to assess the extent of B-cell depletion. Teeling \textit{et al.} recently reported that all mouse anti-human CD20 mAb, including rituximab, bind the large extracellular loop of the CD20 membrane protein4. Therefore, it is conceivable that cellular analyses of rituximab-treated patients using anti-CD20 antibodies are influenced by masking of the CD20 epitope by rituximab. In order to investigate this, we performed a flow cytometric competition assay with rituximab and a commonly used mouse anti-human mAb against CD20.

Peripheral blood mononuclear cells from 4 healthy volunteers were obtained through isolation over a Ficoll gradient and freshly processed for 2 sets of experiments, as follows. In one experiment, samples were preincubated with 0.67 mg/ml rituximab, washed vigorously in phosphate buffered saline-1% bovine serum albumin, and then stained with increasing concentrations of fluorescein isothiocyanate (FITC)-conjugated anti-CD20 (clone 2H7) in combination with an optimal concentration of phyco-erythrin (PE)-conjugated anti-CD19 (clone H1B19) (all from Becton Dickinson, San Jose, CA). In the second experiment, samples were stained with optimal concentrations of FITC-conjugated anti-CD20 (clone 2H7) and PE-conjugated anti-CD19 (clone H1B19) and subsequently incubated with increasing concentrations of rituximab. Thereafter, samples were vigorously washed, and data were collected using a FACSCalibur flow cytometer and analyzed with the Flow Jo software program (Tree Star, Ashland, OR).

Preincubation with rituximab before flow cytometric staining led to a significant decrease in the number of CD20+, CD19+ B-cells (from a mean ± SEM of 91 ± 3.1\% to 12 ± 2.6\%; \textit{P}=0.004) and a significant reduction in the mean fluorescence intensity (MFI) of CD20 (from 25 ± 3.2 to 4.4 ± 0.6; \textit{P}=0.024), even with a large surplus of clone 2H7 mAb. When B-cells were first double-stained for CD19 and CD20 and then incubated with increasing concentrations of rituximab, CD19+ B-cells gradually lost their CD20 expression (MFI 17 ± 2.4 without rituximab and 6.4 ± 1.0 after incubation with 2.67 mg/ml rituximab;
Importantly, the percentages of CD19+ B-cells in the pre-rituximab incubation experiments compared with the post-rituximab incubation experiments were constant (6.1 ± 2.1% and 6.8 ± 1.8%, respectively; \(P=0.34\)).

The effective competition of rituximab against cell-bound anti-CD20 antibody and the failure of increasing concentrations of 2H7 to dislodge rituximab after binding to B-cells indicate that rituximab binds with higher affinity to the CD20 epitope than does 2H7. Our findings suggest that data based on CD20 staining of B-cells, as in Gunnarsson and colleagues’ study, should be interpreted with caution. Importantly, CD19 expression on B-cells was not influenced by rituximab, and therefore, studies using rituximab should include pan-B-cell markers, such as CD19, CD79a, or CD22, to corroborate data on CD20 expression and/or cytoplasmatic CD20 staining.
References

