Chapter 3

Cardiac Malformations and Myocardial Abnormalities in Podoplanin Knockout Mouse Embryos: Correlation with Abnormal Epicardial Development

Edris A.F. Mahtab¹, Maurits C.E.F. Wijffels², Nynke M.S. van den Akker¹, Nathan D. Hahurij³, Heleen Lie-Venema¹, Lambertus J. Wisse¹, Marco C. DeRuiter¹, Pavel Uhrin⁴, Jan Zaujec⁴, Bernd R. Binder⁴, Martin J. Schalij², Robert E. Poelmann¹, Adriana C. Gittenberger-de Groot¹

¹Department of Anatomy and Embryology, ²Department of Cardiology, ³Department of Pediatric Cardiology, Leiden University Medical Center, The Netherlands, ⁴Department of Vascular Biology and Thrombosis Research, Center for Biomolecular Medicine and Pharmacology, Medical University of Vienna, Austria

Developmental Dynamics 2008; 273:847-857
Cardiac Malformations and Myocardial Abnormalities in Podoplanin Knockout Mouse Embryos: Correlation with Abnormal Epicardial Development

Abstract
Epicardium and epicardium-derived cells have been shown to be necessary for myocardial differentiation. To elucidate the function of podoplanin in epicardial development and myocardial differentiation we analyzed podoplanin knockout mouse embryos between E9.5-E15.5 using immunohistochemical differentiation markers, morphometry and 3-D reconstructions. Podoplanin null mice have an increased embryonic lethality, possibly of cardiac origin. Our study reveals impairment in the development of the proepicardial organ, epicardial adhesion, spreading and migration of the epicardium-derived cells. Mutant embryos show a hypoplastic and perforated compact and septal myocardium, hypoplastic atrioventricular cushions resulting in atrioventricular valve abnormalities as well as coronary artery abnormalities. The epicardial pathology is correlated with reduced epithelial-mesenchymal transformation caused by upregulation of E-cadherin, normally downregulated by podoplanin. Our results demonstrate a role for podoplanin in normal cardiac development based on epicardial-myocardial interaction. Abnormal epicardial differentiation and reduced epithelial-mesenchymal transformation result in deficient epicardium-derived cells leading to myocardial pathology and cardiac anomalies.
Introduction
Recently we studied podoplanin expression as a novel marker of a subset of myocardial cells of the embryonic mouse heart. We showed that podoplanin is specifically expressed in the sinus venosus myocardium and the developing cardiac conduction system. Podoplanin is a mucin-like transmembrane glycoprotein of 43 kDa which was first described as E11 antigen in osteoblasts. It is expressed in epithelial and mesothelial cells such as intestinal epithelium, alveolar type I cells, podocytes and mesothelium of the visceral peritoneum. It was also shown to be a potent marker for lymphatic endothelium. In addition, podoplanin expression was found in the epithelial lining of the coelomic wall of the pericardio-peritoneal canal and later on in the cells lining the pleural and pericardial cavity. In a previous study we showed that there is a close relationship between the podoplanin positive cells lining the coelomic cavity epithelium and the podoplanin positive and Nkx2.5 negative area which is added to the venous pole of the heart from the posterior heart field (PHF). This PHF is part of a more extensive area of the splanchnic mesoderm called the second heart field or second lineage. It has been shown that the splanchnic mesoderm or mesenchyme of the dorsal mesocardium at the venous pole not only supports recruitment of sinus venosus myocardium but also the formation of the epicardium from the proepicardial organ (PEO) in chicken and mouse embryos. Cells derived from the PEO grow out over the myocardial heart tube and, have been shown to be essential for myocardial differentiation after epithelial-mesenchymal transformation (EMT).

It is important to realize that it has been postulated that the PHF and resulting myocardium are derived from the epithelial lining of the coelomic cavity (splanchnic mesothelium) by EMT. This process allows epithelial cells to become mobile mesenchymal cells, which can move through the extracellular matrix. An important feature of EMT is that the epithelial adherens junctions need to be loosened. In these junctions the presence of E-cadherin is seen as a calcium dependent cell to cell adhesion protein. Loss of E-cadherin results in loss of epithelial features and consecutive development into migratory mesenchymal cells, while upregulated state of E-cadherin indicates an abnormal EMT. It has been shown that there is a functional link between the cell adhesion molecule E-cadherin and podoplanin. E-cadherin is downregulated by podoplanin in human oral and mouse skin carcinomas resulting in upregulation of EMT leading to invasive grow and metastasis of the carcinoma cells. Podoplanin can therefore be presented as an inhibitor of E-cadherin thus stimulating the EMT process. This function might also be effective in the coelomic mesoderm derived epicardium growing over the heart.
In this paper, we studied *podoplanin* knockout mouse embryos at several developmental stages to elucidate the function of podoplanin in cardiac development. Podoplanin is expressed in the epicardium and it may play a stimulating role in the EMT process. Therefore we hypothesized that knockout of *podoplanin* could lead to abnormal development of epicardium and disturbance of EMT from the epicardium resulting in a diminished formation, migration and contribution of epicardium-derived cells (EPDCs) to the developing heart. This might result in several EPDC related cardiac malformations and myocardial abnormalities.
Material and Methods

Generation of *podoplanin knockout (podoplanin-/-) mice*

Overall, the size and exon-intron organization of the mouse *podoplanin* gene closely resembles that determined for the rat counterpart\(^2\) and is given together with the strategy for gene disruption in Figure 1a. The murine gene consists of 6 exons, separated by five relatively small introns (introns II to V) and a very long first intron I. Exon I encodes the predicted signal sequence, while the predicted extracellular domain is fully contained in exons II to IV. Exon V encodes the putative transmembrane domain and the almost complete cytoplasmic tail. The C-terminal last amino acid residue of mouse *podoplanin* including the stop codon is encoded at the beginning of exon VI.

The *podoplanin* gene from 129S/v mouse genomic DNA was isolated and the pPNT.podoplanin targeting vector was constructed to inactivate the *podoplanin* gene in embryonic stem (ES) cells. It contains a 3.1-kb EcoRI - NcoI fragment containing the 3’ region of intron I, a neomycin phosphotransferase (neo) cassette, a 6.1-kb EcoRI fragment encompassing part of intron 5, the exon VI and the 3’UTR, and a herpes simplex virus thymidine kinase expression cassette (Fig 1a). Two out of 300 G418/Ganciclovir-double-resistant clones underwent the desired homologous recombination, as confirmed by comprehensive Southern blotting of the isolated genomic DNA from R1 embryonic stem (ES) cells derived from the 129S/v mouse strain (received from A. Nagy, Samuel Lunenfeld Institute, Toronto, Canada). Chimeric mice (F0), obtained by 8 cells stage embryo aggregation of the targeted ES cell clones, were tested for germline transmission with Swiss mice. They transmitted the disrupted *podoplanin* allele to their offspring (50% 129S/v: 50% Swiss genetic background), yielding *podoplanin+/−* mice. Intercrossing of these mice resulted in *podoplanin−/−* mice, as identified by Southern blot analysis of tail tip DNA using the 5’ external probe (Fig. 1b). Correct inactivation of *podoplanin* gene was further confirmed with additional digests using 5’-internal, neo-specific, 3’-internal and 3’-flanking external probes (not shown) and by rt-PCR (Fig. 1c) and Western blotting (Fig. 1d) using anti-podoplanin antibodies.\(^2\)

Genotyping of *podoplanin knockout (podoplanin−/−) mice*

Primers located in intron 2 of *podoplanin* gene detecting wildtype allele: 5’-GTT TAA AAG CCA GCA CTG GGC TGG G-3’ and 5’-AAA ACA AGA AGG CAC GGA GAC TGC C-3’ yield a 365 bp product present in *podoplanin+/+* and *podoplanin+/−* mice and neo-gene specific primers: 5’-CTA TTC GGC TAT GAC TGG GCA CAA C-3’ and 5’-CTC AGA AGA ACT CGT CAA GAA GGC G-3’ yield a 742 bp product present in *podoplanin−/−* and *podoplanin+/−* mice. PCR conditions to be used are: initial 94 degrees for 2 minutes, then 35 cycles consisting of 94 degrees for 35 seconds, 60 degrees for 35 seconds and 72 degrees for 35 seconds.
General description
We investigated the lining of the coelomic cavity and the morphology of the heart in 27 wildtype mouse embryos of embryonic stages E9.5 (n=4), E10.5 (n=4), E11.5 (n=3), E12.5 (n=4), E13.5 (n=5), E14.5 (n=4) and E15.5 (n=3) and have compared these with 28 podoplanin knock-out mouse embryos of stages E9.5 (n=3), E10.5 (n=4), E11.5 (n=5), E12.5 (n=5), E13.5 (n=3), E14.5 (n=4) and E15.5 (n=4). All embryos were fixed in 4% paraformaldehyde (PFA) and routinely processed for paraffin immunohistochemical investigation. In addition 5 μm transverse sections were mounted onto albumin/glycerin coated glass slides in a 1 to 5 order, so that 5 different stainings from subsequent sections could be compared.

Immunohistochemistry
After deparaffination and rehydration of the slides, microwave antigen retrieval was applied except for the anti-atrial myosin light chain 2 (MLC-2a) and podoplanin stainings, by heating them 12 min at 98°C in a citric acid buffer (0.01 M in aqua-dest, pH 6.0). Inhibition of endogenous peroxidase was performed with a solution of 0.3% H2O2 in phosphate buffered saline (PBS) for 20 min. The slides were incubated overnight with the following primary antibodies: 1/6000 anti-MLC-2a as a myocardial marker (which was kindly provided by S.W. Kubalak, Charleston, SC, USA), 1/4000 anti-human Nkx2.5 as our pre-myocardial marker (Santa Cruz Biotechnology, Inc., CA, USA, SC-8697), 1/3000 anti-α smooth muscle actin (1A4, Sigma-Aldrich Chemie, USA, A 2547), 1/500 anti-podoplanin (clone 8.1.1. Hybridomabank, Iowa, USA), 1/1000 anti-Wilm’s tumor suppressor protein as a marker for epicardium and early migrating EPDCs (WT-1, Santa Cruz Biotechnology, Inc., CA, USA, sc-192) and 1/150 anti-E-cadherin as a cell adhesion marker (Santa Cruz Biotechnology, Inc., CA, USA, SC-7870). All primary antibodies were dissolved in PBS-Tween-20 with 1% Bovine Serum Albumin (BSA, Sigma Aldrich, USA). Between subsequent incubation steps all slides were rinsed in PBS (2x) and PBS-Tween-20 (1x). The slides were incubated with the secondary antibodies for 40 min: for MLC-2a, WT-1 and E-cadherin with 1/200 goat-anti-rabbit-biotin (Vector Laboratories, USA, BA-1000) and 1/66 goat serum (Vector Laboratories, USA, S1000) in PBS-Tween-20; for Nkx2.5 with 1/200 horse-anti-goat-biotin (Vector Laboratories, USA, BA-9500) and 1/66 horse serum (Brunschwig Chemie, Switzerland, S-2000) in PBS-Tween-20; for podoplanin with 1/200 goat-anti-Syrian hamster-biotin (Jackson Imunno research, USA, 107-065-142) and 1/66 goat serum (Vector Laboratories, USA, S1000) in PBS-Tween-20; for 1A4 1/250 rabbit anti mouse-PO (DAKO, P 0260) in PBS-Tween-20 with 1% Bovine Serum Albumin (BSA, Sigma Aldrich, USA). Subsequently, except for 1A4 stained slides, all slides were incubated with ABC-reagent (Vector Laboratories, USA, PK 6100) for 40 min. For visualization, the slides were incubated with 400 μg/ml 3,3'-diaminobenzidin tetrahydrochloride (DAB, Sigma-Aldrich Chemie, USA, D5637) dissolved in Tris-maleate buffer pH 7.6 to which 20 μl H2O2 was added:
MLC-2a, WT-1 and E-cadherin 5 min; Nkx2.5, 1A4 and podoplanin 10 min. Counterstaining was performed with 0.1% haematoxylin (Merck, Darmstadt, Germany) for 5 sec, followed by rinsing with tap water for 10 min. Finally, all slides were dehydrated and mounted with Entellan (Merck, Darmstadt, Germany).

Figure 1. Strategy of podoplanin gene disruption and gross appearance of podoplanin+/+ (podo+/+) and podoplanin−/− (podo−/−) mice. a: strategy of podoplanin gene disruption. Black boxes in the genomic structure represent exon sequences. Upon homologous recombination, the neo gene replaces a 7.7kb genomic fragment encompassing exons II to V, leading to complete disruption of the podoplanin gene. b: southern blot analysis of mouse genomic DNA digested with BamHI and hybridized to a 5'-flanking external probe. c: rtPCR and d: western blot on mouse tissues. In the adult kidney (shown as example) no podoplanin message is revealed in podo−/− mice; in the Western blot experiments using whole embryos at E13.5 podoplanin protein is seen at the expected molecular weight in podo+/+ and podo+/- mice but is absent in podo−/− mice. A clear gene dosing is seen in podo+/- mice as compared to podo+/+ mice.
3-D reconstructions
We made 3-D reconstructions of the atrial and ventricular myocardium of MLC-2a stained sections of E12.5 wildtype as well as knockout embryos in which the morphological differences were shown. For the morphology of the PEO we have made a 3-D reconstruction based on WT-1 staining of E9.5 wildtype and podoplanin knockout embryos. The reconstructions were made as described earlier27 using the AMIRA software package (Template Graphics Software, San Diego, USA).

PEO and myocardial morphometry
PEO volume estimation was performed in 3 wildtype and 3 podoplanin knockout mouse hearts of E9.5. Myocardial volume estimation was performed in 12 wildtype mouse hearts of embryonic stages E11.5 (n=3), E12.5 (n=3), E14.5 (n=3) and E15.5 (n=3) and 18 podoplanin knockout mouse hearts of embryonic stages E11.5 (n=5), E12.5 (n=5), E14.5 (n=4) and E15.5 (n=4). The morphometry for PEO as well as for myocardium was based on Cavalieri's principle as described by Gundersen and colleagues28. Briefly, regularly spaced (100mm2) points were randomly positioned on the MLC-2a stained myocardium and on the WT-1 stained PEO. The distance between the subsequent sections of the slides was 0.075 mm for myocardium and 0.025 mm for PEO. The volume measurement was done using the HB2 Olympus microscope with a 100x magnification objective for myocardium and 200x for PEO (Fig. 2a,b). Statistical analysis was preformed with independent sample t test (P<0.05) using the SPSS 11.0 software program (SPSS Inc, Chicago, III).
Figure 2. Proepicardial organ (PEO) (a) and myocardial (b) volume estimation of 15 wildtype (WT) mouse hearts of embryonic day (E) 9.5 (n=3), E11.5 (n=3), E12.5 (n=3), E14.5 (n=3) and E15.5 (n=3) and 21 podoplanin knockout (KO) mouse hearts of E9.5 (n=3), E11.5 (n=5), E12.5 (n=5), E14.5 (n=4) and E15.5 (n=4). The podoplanin knockout embryos have a significantly (*) smaller PEO and myocardial volume (P<0.05) compared to the WT embryos.
Results

General characteristics of the podoplanin knockout embryos

This podoplanin knockout mouse model is characterized by an increased embryonic and fetal death of approximately 40% of the homozygote embryos between stages E10-E16, with highest death rate between E10-E13 (Table 1). In addition, 50% of the neonatal homozygote mutant mice die within the first weeks of life. Heterozygous mice reached sexual maturity. The cause of embryonic, fetal and neonatal death (cardiac or non-cardiac) is presently not known.

<table>
<thead>
<tr>
<th>CARDIAC MALFORMATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total KO hearts</td>
</tr>
<tr>
<td>Hypoplastic PEO</td>
</tr>
<tr>
<td>Dissociated EP</td>
</tr>
<tr>
<td>Perforated Myo</td>
</tr>
<tr>
<td>Dextroposed Ao</td>
</tr>
<tr>
<td>Hypoplastic AVC</td>
</tr>
<tr>
<td>Fenestrated VS</td>
</tr>
<tr>
<td>Hypoplastic CA media</td>
</tr>
<tr>
<td>Additional CA</td>
</tr>
<tr>
<td>KO embryos in litter</td>
</tr>
</tbody>
</table>

Table 1. Cardiac malformations and survival rate of the podoplanin knockout (KO) embryos between embryonic days (E) 9.5-15.5. The mutant hearts showed severe hypoplasia of the compact myocardium with several additional morphological abnormalities. The severe malformations at the early stages were correlated with the higher mortality of the mutant embryos at the earlier stages. Ao, aorta; AVC, atrioventricular cushion; CA, coronary artery; EP, epicardium; Myo, myocardium; n, number of studied KO embryos; PEO, proepicardial organ; VS, ventricular septum. (-): not observed.

Podoplanin was specifically expressed in the mesenchyme and in the myocardium at the venous pole. Podoplanin staining was seen in the proepicardial organ (PEO) and the epicardium\(^1\) which are mesenchymal in origin. In the myocardium at the venous pole podoplanin stained the major parts of the cardiac conduction system and sinus venosus (SV) myocardium which includes the sinoatrial node (SAN), venous valves, myocardium in the dorsal mesocardium, the dorsal atrial wall and primary atrial septum (AS) as well as the lining of the SV horns and the common pulmonary veins (PV).
We studied the embryonic phenotype of the knockout embryos with regard to possible cardiac malformations in the *podoplanin* knockout embryos. Several marked morphological cardiac abnormalities were observed in the mutants. We encountered a significantly decreased PEO size and myocardial volume and thickness estimated by PEO and myocardial morphometry (Fig. 2a,b) in the *podoplanin* null mice. Morphological study showed particularly in the younger stages a hypoplastic phenotype (thin atrial and ventricular myocardium) with epicardial impairments such as abnormal spreading and epicardial dissociation. These hearts also showed several morphological abnormalities such as severe dextroposition of the aorta, fenestration of the myocardium of the developing ventricular septum and impaired formation and fusion of the atrioventricular cushions (Table 1). Moreover, myocardial hypoplasia and abnormalities were observed at the sinus venosus region including the sinoatrial node, myocardium of the common pulmonary vein, the dorsal atrial wall, the primary atrial septum and the myocardium of the sinus venosus horns. These malformations will be discussed in a separate study.

Morphology and immunohistochemical expression patterns related to the contribution of PEO and epicardium to the heart are described below in the mutant mice and compared to the wildtype for subsequent stages of heart development.

Stage E9.5

Morphological abnormalities

At E9.5 the PEO was clearly smaller in all *podoplanin* null mouse hearts (Fig. 3: 1 and 2), but no other morphological abnormalities were detected.

Immunohistochemistry

At this stage, WT-1 was expressed in the PEO (Fig. 3a,b) of the wildtype mouse hearts and the *podoplanin* knockout mouse hearts (Fig. 3c and d). E-cadherin was clearly upregulated in the PEO of the knockout mouse hearts compared to the wildtype (Fig. 3e-i, k). Podoplanin staining was observed in the PEO of the wildtype embryos (Fig. 3 j). Other markers were unchanged in the knockout hearts compared to the wildtype (data not shown).

Stage E10.5

Morphological abnormalities

At this stage no morphological abnormalities were detected in the *podoplanin* null mouse embryos.

Immunohistochemistry

As described earlier¹, at these stages weak podoplanin was observed in the major parts of the developing cardiac conduction system and it was markedly expressed in the epicardium (Fig. 4a and c compare with WT-1 expression in b and d).
Figure 3. Dorsal view of 3-D reconstruction (1,2) and ventral view of transverse sections (a-k) of E9.5 podoplanin wildtype (WT; Podo+=/) and knockout (KO; Podo=−/) mouse hearts showing the expression of different markers and the size of the proepicardial organ (PEO). The smaller size of PEO in the KO heart (2) compared to the WT (1) is shown. Sections a,b show WT-1 expression (a overview and b magnification) in the PEO of the WT mouse hearts. There are no marked differences in WT-1 expression between the WT and KO mouse hearts (c overview and d magnification). In contrast to WT-1, E-cadherin expression is upregulated in the KO hearts (g,h,k) compared to the WT hearts (e,f,i). The E-cadherin upregulation is also seen in the mesenchyme of the sinus venosus region (compare arrowheads in f with h) and in the PEO cells (compare arrowheads in i with k). In section j podoplanin expression is shown in the PEO of the wildtype mouse heart. V, ventricle. Color codes: atrial myocardium: light brown, cardinal veins lumen / sinus venosus lumen: light blue, PEO: purple and ventricular myocardium: dark brown. Scale bars: a,c,e and g = 200 μm, b,d,f,h and i = 30 μm and i and k =10 μm.
To demarcate the epicardium, coelomic epithelium and sites of active EMT, we additionally evaluated WT-1 staining as an epicardial and EPDC marker and E-cadherin staining as a cell to cell adhesion marker playing a crucial role in EMT. In both wildtype and podoplanin knockout embryos, WT-1 was observed in the coelomic mesothelium and epicardium (Fig. 4b,d,f,i and j). However, due to the abnormal covering of the epicardium, at several locations WT-1 expression followed this pattern and did thus not normally cover the myocardium in the knockout mouse embryos (Fig. 4d,e,i and j). Marked E-cadherin staining could be observed in both the epicardium and coelomic wall mesothelium of the podoplanin knockout embryos while in wildtype mouse embryos these areas showed less E-cadherin (Fig. 4g,h,k and l).

Figure 4. Transverse sections of E10.5 podoplanin wildtype (WT) (Podo +/+,a-e,g,k) and podoplanin knockout (Podo -/-,f,h,j,l) mouse embryos. In WT mice podoplanin and WT-1 are expressed in the epicardium (EP) and pericardium (P) (a,b and arrows in magnification c,d). In the podoplanin knockout mouse the WT-1 expression in the individual EP cells is unchanged (e,i and arrows in d,j). In the WT mouse more EP cells are found (see arrowheads in d,e), as compared to bare areas in the knockout mouse (arrowheads in i,j). E-cadherin expression is more extensive in the EP of the podoplanin knockout embryos (h: overview and l: magnification, arrows) compared to the WT (g: overview and k: magnification, arrows). Moreover, epicardial dissociation due to the epicardial adhesion impairment can be recognized in the podoplanin knockout embryos (compare arrows in k with l). LA, left atrium; LV, left ventricle; RA, right atrium; RV, right ventricle. Scale bars: a,b,f-h = 200 μm and c-e,i-l= 30 μm.
Stage E11.5

Morphological abnormalities
At this stage, the podoplanin knockout embryos showed an incomplete covering and dissociation of epicardium from the myocardium covering the atrial and ventricular walls. The compact atrial and ventricular myocardium and the trabeculae were hypoplastic. In addition, the atrioventricular endocardial cushions were widely separated and had not started to fuse in contrast to wildtype hearts (data not shown).

Immunohistochemistry
In both wildtype and knockout embryos, the immunohistochemical results of podoplanin (only for the wildtype), MLC-2a, Nkx2.5, WT-1 and E-cadherin were similar to the previous stages (data not shown).

Stage E12.5

Morphological abnormalities
At this stage, the knockout embryos showed several morphological abnormalities (Fig. 5a,b). The aorta was more dextroposed in the knockout compared to the wildtype embryos and still positioned above the right ventricle (Fig. 5c and e). The aorta and pulmonary trunk showed in several cases a side by side position (data not shown). In the cases with a severe hypoplasia of the atrial as well as ventricular compact myocardium and the trabeculae (Fig. 5c-f), epicardial dissociation and incomplete covering were markedly present (Fig. 5h-j). The myocardium of the atrial and ventricular wall showed several perforations which caused continuities between the subendocardial and the subepicardial layers (Fig. 5b and f compare with a and d). The developing ventricular septum was fenestrated (Fig. 5b,e,m) compared to the wildtype (Fig. 5a,c and k). A common atrioventricular orifice was found in 3/5 cases with marked atrioventricular cushion hypoplasia. Moreover the MLC-2a positive cells were absent in the atrioventricular cushion of the mutant heart (Fig. 5b and n compare with a and l).

Immunohistochemistry
In the wildtype embryos, podoplanin staining was marked in the epicardium covering the heart (Fig. 5g). Similar to the previous stages, we observed no differences in the immunohistochemical expression patterns of the used markers in the wildtype and knockout embryos.

Stage E13.5

Morphological abnormalities
In the knockout embryos there was partial epicardial dissociation without severe myocardial hypoplasia and morphological abnormalities (data not shown).

Immunohistochemistry
The immunohistochemical expression of the used markers was similar in the wildtype and knockout embryos of E12.5 (data not shown).
Figure 5. Ventral view of a 3-D reconstruction of an E12.5 wildtype (WT) (a) and a podoplanin knockout (b) mouse heart. c-n: transverse sections of the 3-D hearts stained with MLC-2a (except for g-j). Severe hypoplasia of the compact myocardium and the trabeculae (f, magnification of e; compare with WT d magnification of c) as well as impaired epicardial spreading and dissociation shown with WT-1 staining in i and j (compare to WT g,h) are present in the mutant mice. The chamber myocardium shows several perforations (arrow in b, and f). The ventricular septum (VS) is markedly fenestrated (arrows in m magnification of e). Impaired fusion of atrial septum (AS), atrioventricular endocardial cushion (AVC) tissue and VS results in a large common atrioventricular orifice (asterisk in n, compare a with b and l with n). Moreover the MLC-2a positive cells were absent in the AVC of the mutant heart (l,n). The aorta (Ao) is still positioned above the right ventricle (RV) (e). Sections g and h show respectively podoplanin and WT-1 expression in the epicardium (arrow heads) of the WT mouse heart. In the knockout mouse (arrows in i and j) there is dissociation of the epicardium. LA, left atrium; LV, left ventricle; RA, right atrium. Color codes: atrial lumen: petrol, atrial myocardium: light brown, AV cushion: yellow, LV lumen: red, RV lumen: green, ventricular myocardium: dark brown. Scale bars: c,e,i,n = 200 μm and d,f,k,m = 30 μm.
Chapter 3

Stage E14.5

Morphological abnormalities
Partial epicardial dissociation was observed in two of the four studied hearts of knockout mice (Fig. 6a-f). These hearts also showed an abnormal atrial myocardial architecture, however the hypoplasia was mild compared to stages E11.5 and E12.5 (Fig. 6a-d). The remaining two hearts showed normal epicardial morphology but still a decreased myocardial volume (Fig. 2b, Table 1). In addition, three knockout hearts showed a marked diminished presence of smooth muscle cells in coronary artery media, in two of these hearts additional (pin-point) coronary orifices were observed and the third case showed a double left coronary orifice and an absent right coronary orifice (Table 1).

Immunohistochemistry
In both the knockout and wildtype mice the expression of MLC-2a and Nkx2.5 were similar to the previous stages. WT-1 was patchy in the mild hypoplastic hearts of the knockout embryos due to the partial epicardial discontinuity (Fig. 6 e and f). Moreover, in the knockout hearts less EPDCs were observed compared to wildtype (Fig. 6 e and f).

Stage E15.5

Morphological abnormalities
At this stage, epicardial dissociation with mild hypoplasia of the compact myocardium was seen in 2/4 hearts studied. The remaining two hearts showed no epicardial morphological abnormalities but still had decreased myocardial volume (Fig. 2b). Similar to the previous stage, podoplanin knockout hearts showed coronary artery abnormalities (Table 1). All four studied hearts demonstrated deficiency of smooth muscle cells in the coronary artery media (Fig. 6 g,h). Moreover, two hearts had additional (pin-point) coronary orifices.

Immunohistochemistry
The expression patterns of the immunohistochemical markers in both wildtype and knockout embryos were similar to the previous stages, except that in epicardial dissociation and incomplete covering of the mild hypoplastic hearts of the knockout embryos, WT-1 was not expressed (data not shown).
Figure 6. Ventral view of transverse sections of an E14.5 wildtype (WT) (a,c,e) and a podoplanin knockout (b,d,f) mouse heart stained with MLC-2a (a-d) and WT-1 (e-f). Hypoplasia of the compact myocardium and the trabeculae (compare b and d with a and c) as well as impaired epicardial spreading and dissociation shown in d and f are present in the mutant mouse. Moreover, the myocardium of the ventricular wall shows a perforation (arrow in d). The ventricular septum (VS) is less compact compared to WT (compare a and b). Sections e and f show WT-1 expression in the epicardium (EP) of the respectively WT and knockout mouse hearts. In the podoplanin knockout mouse (arrowhead in d and f) there is dissociation of the epicardium compared to the WT (c and e). In section f there are several locations on the ventricular wall without epicardial covering (arrows in f) compared to WT (arrows in e). The podoplanin knockout hearts have (f) less epicardium-derived cells (EPDC) compared to WT (e). Transverse sections of an E15.5 WT (g) and knockout (h) embryos stained with 1A4 showing the deficiency of smooth muscle cells in the coronary artery (CA) media (arrow heads) in the knockout embryos. LV, left ventricle; RA, right atrium; RV, right ventricle. Scale bars: a,b = 200 μm and c-f = 30 μm, g,h = 10 μm.
Discussion

The coelomic epithelium not only forms the PEO6-11 but probably also contributes mesenchyme to the PHF-derived structures at the venous pole of the heart1,6,7,29. The latter area is the source of sinus venosus myocardium which is located at the venous pole. For that reason we postulate that the PHF contributes to the formation of the PEO and sinus venosus myocardium. The PHF contribution to the sinus venosus myocardium at the venous pole, which has been shown to be derived from Nkx2.5 negative1,30 and Tbx18 positive30 progenitor cells, will be discussed in a separate study. In the current study we have shown that the PEO as well as epicardium are positive for podoplanin, a marker of the coelomic mesothelium. Therefore we investigated podoplanin knockout mice to study the effect of podoplanin on PEO, epicardium, EPDCs and their described17,19,21 subsequent influence on myocardial architecture.

PEO migration, epicardial adhesion and spreading impairment

The PEO in mouse develops from the coelomic mesothelium at the venous pole of the heart10,11 in a bilaterally symmetric pattern31. After attachment to the myocardium the PEO cells spread over the heart to cover the entire myocardium. The epicardial associated cardiac abnormalities reported in podoplanin knockout mouse are comparable to those in several other studies, where the importance of PEO cell migration, epicardial adhesion and spreading has been shown such as in VCAM-1, Tbx5 and α4 integrin knockout mouse models32-36. Abnormal epicardial migration and spreading was recently described in the RXRα37 and Fgf938 knockout mice that show malformations similar to those seen in our podoplanin knockout mouse supporting a role for podoplanin in the PEO migration, epicardial adhesion and spreading.

EPDCs migration impairment

The key process preceding the migration of EPDCs is EMT. Inhibition of EPDC migration has been shown as a result of a downregulation of α4 integrin leading to disturbed EMT34. Other important transcriptional factors involved in the EMT are Slug (avian) and Snail (mammalian) that repress cell adhesion molecules including E-cadherin resulting in EMT23,39,40. Interestingly in some tumors repression of E-cadherin has been associated with upregulation of podoplanin24. In our study we observed in the wildtype mouse the expected downregulation of E-cadherin during the EMT period. In podoplanin knockout mouse, however, where less EPDCs were seen, E-cadherin expression remained high, supporting that podoplanin plays an important role in EMT.

Another transcription factor essential for the development of EPDCs is WT-141, which is found in the epicardium and EPDC’s shortly after EMT. Recently we have shown a role for WT-1 in epicardial EMT and EPDC formation in the SP3 mutant mouse31. In that model, a downregulation of WT-1 expression was observed resulting in disturbed epicardial-myocardial interaction, diminished EPDC formation and cardiac abnormalities comparable to our
podoplanin knockout mouse. In the *podoplanin* model we have not observed a downregulation of WT-1 but lack of WT-1 expression in areas with absence of epicardium. Both models have in common a disrupted EMT and EPDC migration.

Cardiac malformations

During the heart development, cardiac looping has a crucial role which is directed by several mechanisms such as gene regulation, myocardial contraction and blood flow as recently reviewed by Linask and VanAuker\(^2\). Abnormal cardiac looping observed in this study could be the result of a myocardial problem related to a defective epicardial-myocardial interaction\(^1\). It has been shown that EPDCs also invade the inner curvature\(^4\). Remodeling of the inner curvature is an important process which is necessary to properly establish the definitive atrioventricular and ventriculo-arterial connections\(^2\,^4\,^4\). The outflow tract malformations as dextroposition of the aorta and side by side position of the aorta and pulmonary trunk described in our study are thus considered to be the result of abnormal looping.

With regard to the coronary arteries in the *podoplanin* knockout embryos we have observed severe abnormalities such as a hypoplastic media and additional (pin-point) orifices. Several retroviral labeling experiments, as well as studies in quail-chicken chimeras and PEO ablation studies have shown the contribution of EPDC’s to the development of the smooth muscle cells and adventitial fibroblasts of the coronary arteries\(^4\). Moreover, impaired formation of the coronary vasculature, as seen in the current study, was shown to be related to altered EPDC contribution and migration into the wall of the heart\(^1\,^4\,^4\).

Considering the atrioventricular cushions in the *podoplanin* mutant mice we observed cases with an unseptated atrioventricular canal and a common atrioventricular valve. The relation to absence of EPDCs with valve defects observed in our study may therefore be two-fold. First, the myocardium needs signals from the EPDCs for proper differentiation\(^1\,^3\,^7\). EPDC deficiency in the underlying myocardium may influence the myocardial production of ‘adherons’ and other chemotactic molecules such as TGFβ and BMP, which have been shown to be crucial for cushion development\(^4\). Since our knockout model has a significantly diminished myocardial volume probably due to the epicardial dissociation and impaired EPDC formation we can postulate that the hypoplasia of the atrioventricular cushion might be an indirect influence of EPDCs. Secondly, it has been shown that EPDCs invade the atrioventricular cushions directly where they may play a role in EMT of the endocardium\(^1\,^4\,^7\). Thus based on our study diminished direct physical presence of EPDCs in the cushions may also impair correct cushion development, which may lead to hypoplasia of the cushions.

Additionally, the observed outflow tract and atrioventricular cushion abnormalities observed at the early stages of the mutant embryos could be the result of retarded development rather than malformations related to the EPDC’s. However, the hearts at E11.5 and E12.5 showed
the expected maturation: at E12.5 the atria and ventricles were present at the correct side and well distinguishable, the outflow tract cushions were well developed, the outflow tract was separated in aorta and pulmonary trunk and the PV could be clearly observed at the left side. Considering these observation we have concluded that the morphology of the mutant hearts was not based on just developmental delay. Combined with the fact that we did not see the severe malformations at the older stages we conclude that increased embryonic death is related to the severe cardiac phenotype seen in part of the embryos at early stages. We conclude that the observed cardiac abnormalities are the result of impairment in the PEO formation, migration, epicardial adhesion, spreading and migration of EPDCs finally resulting in increased embryonic death of the podoplanin knockout mouse embryos.

Acknowledgments
We thank Jan Lens for expert technical assistance with the figures. N.M.S. van den Akker was funded by the Netherlands Heart Foundation (2001B057).
Reference List

Chapter 3

Podoplanin and Epicardial-Myocardial Interaction
