Chapter 6

Power as a Determinant of Team Composition and Conflict: Linking Team Power to Conflict, Interpersonal Power Congruence, and Team Decision-making Performance

Based on Greer, Caruso, & Jehn (2008)

Given the rise of work teams in recent decades (Cohen & Bailey, 1997), enhancing team effectiveness has become a significant concern throughout modern organizations. While an abundance of literature exists on the hallmarks of effective teams (for a review, see Kozlowski & Ilgen, 2006), research has yet to examine whether teams at different levels in the organization - i.e. teams with different levels of power - are equally effective. This lack of attention is surprising given the pervasiveness of power to social interaction (Fiske, 1993). Indeed, research suggests that power hierarchies are inevitable – no society, organization, or team can exist over time without one (Sidanius, 1993). Therefore, investigation of the impact of power and hierarchy on teams may be critical in understanding the dynamics and effectiveness of organizational teams (cf. Mannix & Sauer, 2006).

In this chapter, we hope to help break new ground in exploring differences in conflict and performance for teams with different levels of collective power. In particular, we are interested in teams with high and low levels of team power, defined here as the collective capacity to modify others' states by administering (i.e., providing or withholding) actual resources or punishments to others (French & Raven, 1959; Keltner,
Gruenfeld, & Anderson, 2003). High-power teams in an organization include, for example, management teams or advisory teams who are in a position to control the outcomes of others in the organization while lower power teams include teams, for example, of entry-level employees who do not control resources which affect the outcomes of others in the organization. Our goal is to compare the quality of team performance for both types of teams and explore team dynamics that could undermine or improve their performance.

We also suggest that the internal power balance within teams is of importance. We propose that the effects of team power may be contingent upon the degree to which teams have a high level of agreement about the relative power hierarchy within the team. This is in line with research which has shown that if team members experience interpersonal incongruence—failure to get their peers to see them as they see themselves—on an important characteristic, social interactions can be severely strained (e.g., Polzer, Milton & Swann, 2002). In particular, it can undermine team members’ willingness to work toward common interests (Polzer et al., 2003; Milton & Westphal, 2005; Swann, Kwan, Polzer, & Milton, 2003). This suggests that interpersonal congruence regarding relative power levels within the team (power congruence) may play a significant role in understanding the effects of team power on team dynamics.

With this research, we offer several contributions to the existing literatures on teams, power, and team composition. First of all, we extend existing literature on team effectiveness (see Kozlowski & Ilgen, 2006) by theorizing about and testing potential differences in team effectiveness based on a team’s power within the organization. Secondly, we extend past research on team composition (for a review, see Mannix & Neale, 2005) as well as past research on the intrapersonal and interpersonal effects of power (for a review, see Keltner, Gruenfeld, & Anderson, 2003) by examining power as a differentiating characteristic both between and within teams. While research in the psychological tradition has found important differences to exist between low- and high-status (or power) individuals (c.f. Keltner et al., 2003), scant research has examined the relevance of power, both theoretically and empirically, for team-level interactions (c.f.
Mannix & Sauer, 2006). We thus extend past research on the individual level effects of power as well as past work on team composition by both theorizing about and testing the team level effects of power.

Overview of Studies

In our first study, we examine the differences between high- and low- power teams in terms of their intragroup conflict and team performance. We investigate this in a field study of existing organizational teams. Our second study then replicates this with a second field sample. Additionally, in our second study, we introduce the role of power congruence in moderating the relationship between team power and intragroup conflict. We suggest that when team members agree on a hierarchy within the team, high power teams may have lower levels of intragroup conflict.

Study 1: Linking Team Power to Team Performance

High-power teams find themselves in leading roles in the organization. However, in this chapter, we suggest that they may not always perform as effectively as low power teams. We specifically propose that this may be because of the potentially high levels of counterproductive conflicts in high-power teams.

Team Power and Intragroup Conflict

We draw upon past literature to define intragroup conflict as the process arising from perceived incompatibilities or differences between team members (Boulding, 1962; De Dreu, Harinck, & Van Vianen, 1999; Thomas, 1992; Wall & Callister, 1995). Three types of conflict have been suggested to exist in teams: task conflicts, process conflicts, and relationship conflicts (Jehn, 1997). Task conflicts occur about task goals or outcomes, process conflicts occur around the logistics of task accomplishment, and relationship conflicts concern, for example, personality conflicts (Jehn & Bendersky, 2003). While past research has suggested that task conflict may benefit team performance (e.g., Jehn, 1997), the majority of research has found all three types of conflict to detract from team performance (De Dreu & Weingart, 2003).
In the present research, we propose that a high level of power will be positively related to a team’s level of all types of intragroup conflict for several reasons. We first propose that high power teams will have higher levels of task conflict than low-power teams. Teams with high power are likely to contain a group of individuals who all have high levels of self-efficacy and dominance. This is because those in high-power teams are often seen by themselves and others as the ‘winners’ of the career tournament within the organization (Lazaer & Rosen, 1981). The resulting high levels of self-efficacy may lead members to commit to certain courses of action, even if they are no longer successful (Whyte et al., 1997). When members pursue task objectives in different manners and are unwilling to change their course of action to fit with the approaches of other members, task conflicts are likely to arise. Furthermore, team power may reduce the ability of team members to understand each others’ thoughts, feelings, or perspectives (Galinksy et al., 2006) as well as to accurately perceive, estimate, or adapt to each others’ needs or views (e.g., Anderson & Berdahl, 2002; Anderson, Keltner, & John, 2003; Cast, 2003; Ebenbach & Keltner, 1998; Keltner & Robinson, 1997). This inability to understand each others’ perspectives and insensitivity to teammates’ ideas may increase task conflict within high-power teams as members will have difficulty in discussing work-related opinions within the team.

High-power teams are also likely to have higher levels of process conflict. High levels of efficacy and dominance, as likely to be found in those who have ‘won’ the career tournament to gain a place in a higher power organizational team (Lazaer & Rosen, 1981), can lead to dissatisfaction when leadership positions are withheld (Elangovan & Xie, 1999). In high-power teams, not every member of a higher power team can be a leader within the team - in the small group hierarchy, only a limited amount of prestige is available (cf. Baumeister, Smart, & Boden, 1996). Therefore, in high-power teams, members may feel disgruntled that while their team occupies a high-power position in the organization, not all members may occupy high-power positions within the team. In such situations, high-power teams may experience high levels of process conflict, as members battle for different roles within the team, disagree about who should take the lead, and fight over how resources should be
allocated within the team. These process conflicts are especially likely, as those with high levels of confidence are likely to have a high level of competitiveness (Camerer & Lovallo, 1999) and because those in powerful teams in the organization are unlikely to want to give up the feeling of being in power when functioning within the hierarchy of the high-power team – i.e. power is addictive (Bruins & Wilke, 1992; Mulder, 1977). Members of high-power teams may thus be especially likely to want to claim valuable resources and roles for themselves, and thus may be especially likely to have process conflicts about the delegation of these resources and roles within the teams. This implies that teams with high power may have higher levels of process conflict than low-power teams.

Lastly, high-power teams may also be likely to have higher levels of relationship conflicts than low-power teams. Because members of high power teams have high power in the organization, they may feel threatened when having to occupy a low-power position within the high-power team. Indeed, Scheepers and Ellemers (2005) found that when those with high status evaluated a change in their high status position, they exhibited a physiological threat response (i.e. elevated systolic blood pressure and mean arterial pressure). Resulting anxieties or feelings of threat may then cause members of high-power teams to lash out against each other (Baumeister, Smart, & Boden, 1996; Martorana, Galinsky, & Rao, 2005). Such negative interpersonal behaviors can lead to a high level of relationship conflicts within high power teams. As an example of these negative interpersonal behaviors, research has shown that those in power are less likely to behave politely towards others (e.g., Keltner et al., 1998; Smith, Jost, & Vijay, 2008) and more likely to express their own personal attitudes and disagree with the personal attitudes of others (Anderson & Berdahl, 2002). When members are more likely to express personal views (i.e. of politics) and disagree with those of others, relationship conflicts are more likely to arise. Additionally, the negative behaviors often exhibited by high-power members, such as interrupting other members and behaving rudely, have been shown to be especially likely in situations where multiple high-power members are interacting with each other (Smith-Lovin & Brody, 1989). In such situations, wherein members routinely treat each other in a rude and discourteous manner, relationship conflicts are likely to
result. Therefore, high-power teams may be more likely to experience higher levels of relationship conflict than low-power teams. We propose:

Hypothesis 1. High-power teams will have higher levels of conflict (task, process, relationship) than low-power teams.

We propose that the higher levels of conflict in high-power teams may have a negative impact on team performance. In line with recent literature reviews (De Dreu, 2007) and a meta-analysis (De Dreu & Weingart, 2003), we propose that intragroup conflict will be negatively related to team performance. The reasoning for this is that conflicts of all types are often linked with negative emotions (cf. Jehn & Bendersky, 2003). This is because conflicts arise from perceived incompatibilities, and perceived incompatibilities which block a desired outcome may lead to negative emotions (cf. Bell & Song, 2005; Lazarus, 1991; Roseman, Antoniou, & Jose, 1996), such as frustration, resentment, anger, and approach (Guetzkow & Gyr, 1954; Russell, 1978; Stearns, 1972). These negative emotions can impair the cognitive functioning of team members (Brief & Weiss, 2002), as negative emotions overrun and oversimplify rational reasoning. In addition to this negative emotionality, conflicts can distract members from task accomplishment, decreasing team productivity and task efficiency (Evan, 1965). Therefore, we propose:

Hypothesis 2. Conflict (task, process, relationship) will have a negative relationship with team performance.

Furthermore, we believe that the crucial role of conflict in hampering effective team performance explains our prediction that high-power teams will exhibit lower levels of performance than low-power teams. We believe that the performance disadvantage experienced by high-power teams relative to low-power teams is primarily attributable to the higher levels of conflict in high-power teams. Therefore, we propose:

Hypothesis 3. Conflict will mediate the relationship between team power and team decision-making performance, such that high-power teams will have higher levels of conflict than low-power teams, and conflict will have a negative relationship with team performance.
Study 1 Methods

We tested the hypotheses in this study using a sample of 22 workgroups (94 employees) within the sales unit of a telecommunications company located in the Netherlands. The average age was 41.9 years old (SD = 4.6), and 24% of the participants were female. The average team had worked together for 3.0 years (SD = 1.8).

Measures

The teams completed questionnaires seated together in a conference room on the day of the study. In return for their participation, teams were given reports on how their team functioning compared to other teams in the organization. On the survey the teams completed, all survey items utilized a 1 to 7 Likert scale, with 1 indicating low agreement with the item and 7 indicating high agreement.

Team Power

We assessed team power based on the organizational level of the teams within the business unit. We obtained this information from company records provided to us. In line with our definition of team power, teams that had control over other teams and/or had the ability to make decisions that would impact the rest of the company were classified as high-power teams. Seven teams were identified as high-power teams, and fifteen teams were identified as low power teams. Examples of high-power teams included the management teams of several departments within the business unit, as well as an internal steering committee. In addition, as a manipulation check, we also asked teams whether they occupied a high-power position within the company. This was successful, as high-power teams reported having significantly more power within the company ($t = -1.82, p < .05$).

Conflict

Intragroup conflict was measured using the 8-item scale of Jehn (1995) for task and relationship conflict, and the 3-item scale of Jehn and Mannix (2001) for process conflict. Each scale exhibited sufficient internal
reliability (task conflict $\alpha = .90$; relationship conflict $\alpha = .76$; process conflict $\alpha = .91$). A factor analysis revealed three distinct factors per each conflict type, with all loadings above .75, showing sufficient discriminant validity between the scales as well.

Team Performance

To assess team performance, we had an external supervisor of each team rate the team’s performance on the basis of 3 items (“I believe this group performs well at work”, “This group is effective in getting things done in time”, and “I think in general this group is effective with respect to work”). This scale had sufficient internal reliability ($\alpha = .93$). We also had teams rate their own performance based on the same items. This scale also had sufficient internal reliability ($\alpha = .87$).

Controls

We initially controlled for team size, team tenure, organizational tenure, and diversity in gender, nationality, and work function. However, they did not significantly affect the relationships in our model, so were removed from ensuing analyses.

Aggregation

To assess the appropriateness of aggregating the conflict variables as well as the perceived team performance variable to the team level, we first examined the inter-rater agreement (r_{wg}) and the inter-class correlation coefficients (ICCs) as well as their corresponding F-tests. We found sufficient evidence to aggregate the conflict variables to the team level. For all three conflict types, significant F-tests indicated significant between-group variance. Additionally, the ICCs and r_{wg}s for each variable exceeded acceptable levels, indicating sufficient within-group agreement (task conflict: $r_{wg} = .76$, ICC$[1] = .31$, ICC$[2] = .66$; relationship conflict: $r_{wg} = .80$, ICC$[1] = .22$, ICC$[2] = .55$; process conflict: $r_{wg} = .70$, ICC$[1] = .28$, ICC$[2] = .62$; perceived team performance: $r_{wg} = .82$, ICC$[1] = .26$, ICC$[2] = .60$). Therefore, individual responses were averaged together to create team-level scores.
Study 1 Results

Means, standard deviations, and correlations are displayed in Table 1. As seen in the table, team power is positively related to process and relationship conflict and negatively related to both measures of team performance.

Table 1. Study 1 means, standard deviations, and correlations

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>s.d.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Team Power b</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2. Task Conflict</td>
<td>3.26</td>
<td>.82</td>
<td>.30</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3. Relationship Conflict</td>
<td>2.00</td>
<td>.56</td>
<td>.65***</td>
<td>.65***</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4. Process Conflict</td>
<td>3.01</td>
<td>.79</td>
<td>.56**</td>
<td>.72***</td>
<td>.75***</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5. Team Performance</td>
<td>5.25</td>
<td>.84</td>
<td>-.50**</td>
<td>-.41*</td>
<td>-.51*</td>
<td>-.60**</td>
<td>-</td>
</tr>
<tr>
<td>- Supervisor Rating</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Team Performance</td>
<td>5.54</td>
<td>.71</td>
<td>-.46**</td>
<td>-.66***</td>
<td>-.58**</td>
<td>-</td>
<td>.44*</td>
</tr>
<tr>
<td>- Team Rating</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* p < .10; p < .05; p < .01; * n=22; b dichotomous variable

In Hypothesis 1, we proposed that high-power teams would have higher levels of conflict than lower power teams. In line with this hypothesis, we found that high-power teams had significantly higher levels of relationship conflict ($F = 14.03, p < .001$, high power $M = 2.57, SD = .33$; low power $M = 1.87, SD = .44$) and process conflict ($F = 8.84, p < .01$, high power $M = 3.78, SD = .84$; low power $M = 2.74, SD = .63$). We did not find a significant effect on task conflict ($F = 1.87, n.s.$).

In Hypothesis 2, we proposed that all three forms of conflict would be negatively related to team performance. In line with this, we found that relationship conflict was negatively related to the supervisor rating of team performance ($\beta = -.51, p < .05$) as well as team members’ perceived team performance ($\beta = -.58, p < .01$). We also found that process conflict was negatively related to the supervisor rating of team performance ($\beta = -.60, p < .01$) as well as team members’ perceived performance ($\beta = -.72, p < .001$). We also found that task conflict had a marginal negative effect on the supervisor rating of performance ($\beta = -.41, p < .10$) and a significantly negative effect on the members’ perceived rating of team performance ($\beta = .
Lastly, in Hypothesis 3, we proposed that conflict would mediate the relationship between team power and team performance. To test this, we followed the procedure of Baron and Kenny (1986). To establish mediation, four steps are required. First, the independent variable must be related to the mediator. As shown in Hypothesis 1, team power was significantly related to both relationship and process conflict. Secondly, the mediator must be related to the dependent variable. In Hypothesis 2, we showed that both relationship and process conflict were both negatively related to both the supervisor rating of team performance as well as members’ perception of team performance. Thirdly, the independent variable must be shown to be significantly related to the dependent variable. We find support for this, as we find team power to be significantly related to both the supervisor rating of team performance \((F = 5.09, p < .05, \text{high power } M = 4.50, SD = 1.41; \text{low power } M = 5.50, SD = .50)\) as well as the team members’ rating of perceived team performance \((F = 5.10, p < .05, \text{high power } M = 5.00, SD = .89; \text{low power } M = 5.76, SD = .57)\). Lastly, the effect of the independent variable should become non-significant when the mediator is controlled for. We also find support for this. The effect of team power on the supervisor rating of team performance becomes non-significant when the conflict types are controlled for (before adding conflict into the equation: \(\beta = -.51, p < .05\); after adding conflict into equation: \(\beta = -.14, n.s.\)), as does the effect of team power on members’ perceived team performance (before adding conflict into the equation: \(\beta = -.46, p < .05\); after adding conflict into equation: \(\beta = -.18, n.s.\)). We also tested for mediation using Sobel tests. This also offered support for our findings. Namely, we find that conflict mediates the relationship between team power and the supervisor’s rating of team performance (process conflict: \(z = -2.10, p < .05\); relationship conflict: \(z = -1.99, p < .05\)). We also find that conflict mediates the relationship between team power and members’ perceptions of team performance (process conflict: \(z = -2.50, p < .05\); relationship conflict: \(z = -2.40, p < .05\)).
Study 1 Discussion

In this first study of the effects of team power, we find that team power had a predominantly negative effect for teams. Team with high levels of power had lower levels of team performance. This effect was fully explained by the level of process and relationship conflict in high power teams - high power teams had higher levels of process and relationship conflict, and process and relationship conflict were significantly, negatively related to team performance. We did not find a significant effect of team power on task conflict, suggesting that the effects of team power may be felt predominantly in the interpersonal and process issues of teams.

Limitations

While this study provides an important first test of the notion that the power of a team may have an impact on its processes and performance, there are several limitations to this study. First of all, the sample size is small. While tests for the inequality of variances were not violated, replication of our findings in a larger sample would still be desirable. Secondly, the teams in this organization performed different tasks. Perhaps the tasks of high-power teams such as management teams were more difficult, which is why they performed worse. Therefore, investigating the performance differences between low- and high-power teams on a common, single task would be desirable in order to remove extraneous factors from the picture. Thirdly, our findings paint a very bleak picture for the management of organizations - namely, that the teams in power in an organization are often ineffective. Future research would benefit from identifying factors which could give more hope to this picture. By identifying potential moderating conditions of the relationship between team power and conflict and performance, researchers may be able to provide organizations on ways to help their high-power teams avoid the pitfalls of being in power.

Study 2: The Moderating Role of Power Congruence

In Study 2, we address the limitations of Study 1 as well as incorporate an important and theoretically relevant moderator of the relationship between power and intragroup conflict. We examine the basic hypotheses proposed in Study 1 in a larger, more diverse sample. We test
the differences between high- and low- power teams during a controlled information sharing task, which simulates a task common to the interactions of both low- and high- power teams.

Additionally, we suggest in this study that the relationship between a team’s power and intragroup conflict may be ameliorated when individuals have a higher level of agreement about the relative power hierarchy within the team. Power (and in the broader sense ‘disparity’) has often been overlooked as a demographic variable driving team processes and performance (c.f. Harrison & Klein, 2007), which is surprising given the centrality of power to social interaction (Fiske, 1993). Indeed, research has suggested that hierarchies are inevitable in groups (Overbeck, Correll, & Park, 2005; Sidanius, 1993; Wegener, 1992). However, hierarchies are dynamic, and perceptions of relative power within the team may conflict (Owens & Sutton, 2001) – i.e. members may have discrepant views of each others’ power within the team. In such situations, interpersonal congruence is low. Interpersonal congruence is defined as the degree to which group members see others in the group as they see themselves (Polzer, Milton, & Swann, 2002). When members have discrepant views of each others – i.e. when interpersonal congruence is low, this may negatively affect the team environment (e.g., Polzer, Milton & Swann, 2002). In particular, low levels of congruence can undermine team members’ willingness to work toward common interests (Milton & Westphal, 2005; Polzer et al., 2002; Swann, Kwan, Polzer, & Milton, 2003), which may exacerbate the relationship between team power and conflict. This suggests that interpersonal congruence regarding power levels within the team may play a significant role in understanding the effects of team power on team dynamics. We therefore extend past research which has suggested that power dynamics within high-power teams may have an important effect on team functioning (e.g., Greve & Mitsuhashi, 2007) by showing how power congruence may affect the relationship between team power and team conflict. We test Hypotheses 1-3, as outlined in Study 1, and additionally, we introduce a new hypothesis focusing on the moderating role of power congruence, which we will outline below.
The Moderating Role of Power Congruence

We propose that the positive relationship between power and conflict is likely to be affected by the degree to which team members agree upon the hierarchy within their team. Within the team context, members will have a hierarchy specific to the team. In order to function well within the team, members need to know their place within the hierarchy. Knowing one’s place within the team’s hierarchy provides important information for team members, such as their reputation within the group (De Cremer & Tyler, 2005) or the degree of influence appropriate for members to wield (Bales, 1950; Berger, Rosenholtz, & Zelditch, 1980). This information in turn may reduce members’ uncertainty about their social position in the group (c.f. Van den Bos & Lind, 2002; De Cremer & Sedikides, 2005). Indeed, decades of research has suggested that people have a critical need to reliably predict how others will interact with them (Cooley, 1902; Mead, 1934; Swann, 1987; Tajfel & Turner, 1986; Turner, 1987), and that because of this, clear hierarchies are often viewed as a necessity for social interaction (Berger Cohen, & Zelditch, 1972).

In teams, interpersonal congruence, or the degree to which team members see others in the team as they see themselves (Polzer et al., 2002), regarding power levels in the group may be a good indicator of the degree to which teams have a clearly agreed upon hierarchy. Therefore, in this study, we examine the degree to which members’ perceptions of the relative power of themselves and others is in agreement – i.e. we look at the level of power congruence in the team. We predict that when these perceptions are in alignment, there is high-power congruence and a clearly agreed upon hierarchy can be said to exist in the team. This will enable the team members to better structure their interactions with each other. This in turn should help ameliorate the relationship between team power and intragroup conflict. Specifically, we suggest that when members perceive each others’ power level accurately, the predictability and coherence of their working world remains intact (Mead, 1934; Swann, 1987). This allows members to verify their own self-views of the hierarchy with others, and this self-verification process enables them to form confident expectations of one another’s behavior (c.f. Swann, 1987).

Research on power has shown support for this. For example,
research on hierarchy in teams has suggested that stable, clearly agreed upon hierarchies - i.e. legitimate hierarchies, such as those that exist under high-power congruence, will give members a better sense of ‘place’ within the team and reduce uncertainty about members’ positions within the team (e.g., Berger, Ridgeway, Fisek, & Norman, 1998; Ridgeway & Berger, 1986; Overbeck, Correll, & Park, 2005). This will enable members to act appropriately – in a way that is in line with team roles (Owens & Sutton, 1999) and will reduce the confusion that may occur especially in high power teams over the roles members are supposed to assume within the team. Recent work by Keltner and colleagues (2008) suggests that clear power hierarchies may help serve as a prioritization device in teams, providing guiding lines for resource allocation and related member behaviors. This may also help reduce the likelihood of status contests in high-power teams (Keltner et al., 2008), thereby attenuating the effect of team power on conflict. Lastly, power congruence may increase the reliability of team members’ knowledge of each others’ role in the team, may counter the negative effects of team power on perspective taking and collaboration by enabling teammates to better anticipate, acknowledge, and appreciate one another’s contributions (Wittenbaum & Stasser, 1996). All of these influences may help interpersonal power congruence to reduce the threat and uncertainty felt in high-power teams and stave off intragroup conflict. Therefore, we propose:

Hypothesis 4. Power congruence will weaken the positive relationship between team power and conflict, such that high-power teams will have lower levels of conflict (task, process, relationship) when power congruence exists.

Study 2 Methods

We tested our hypotheses using data collected from 42 pre-existing work teams (322 employees) of a multinational financial corporation with offices in the Netherlands. The average team size was 7.67 (SD = 3.04), and the average team had worked together for 3.65 (SD = 2.01) years. Twenty-five percent of the respondents were non-Dutch, and 51% were female. The average age of employees was 32 (SD=5.19). The teams participating in our study came from a variety of departments across the
company, including the internal audit department, the investment banking department, and the human resources department.

Procedure

We recruited teams for our study by contacting departmental heads within the corporate office of the financial corporation where the study took place. Departmental heads required all teams within their department to attend. In return for their participation, teams received a training and individualized team reports on how their team processes were affecting their team performance following completion of the training program.

On the day of our study, teams entered a conference room and were given an initial survey assessing demographic and other baseline team characteristics, including perceptions of power within the team. Following completion of this survey, team members were told they were going to be doing a task together to assess team dynamics. They were then informed that performance on the task was important for the quality of feedback they would get in their post-training individualized report, and that they would be benchmarked against other teams participating in the workshop.

For the task, teams completed a logic puzzle together. In this logic puzzle, teams were given information about five different managers at their company who worked in five different business units in five different locations and were managing five different projects with five different budgets. Teams were asked to match which manager worked in which business unit in which location and which project with which budget the manager was responsible for on the basis of clues distributed to each of the team members (for example, a member would receive five clues, one of which would read “Manager D does not work in Asia”). Each member received the same amount of clues and the same amount of shared versus unshared clues compared to other team members. Because all clues were critical to full completion of the puzzle, the presence of the unshared clues meant that no one member could solve the puzzle on his or her own – members had to share information in order to reach a joint solution. Teams were then informed that their performance would be based on what they were able to match on the team solution sheet before time was up. Fifteen minutes were allotted for the task and teams were informed when there
were five minutes remaining and one minute remaining. After the task, teams were debriefed.

This task resembles traditional hidden-profile tasks (e.g., Stasser & Titus, 1985) where members are given clues and asked to come together to a common solution which no one member has sufficient clues to produce. Group decision-making tasks, such as this one, which involve high demands for collective information processing present an ideal opportunity to contrast the dynamics and performance of high- and low-power teams. In such tasks, the importance and implications of any single team member’s knowledge are not likely to be apparent until the team can process that knowledge in the context of what other teammates know – compilation and integration of group members’ task-relevant information are critical to success (Wittenbaum, Hollingshead, & Botero, 2004). Therefore, such a task brings to immediate light the quality of group processes evident in the team and the ability of the team to compile and integrate information in order to make effective decisions.

In our task, every member of the team was given an equal amount of shared and unshared clues. We chose to use this task because it resembles a decision-making procedure of both high- and low-power teams, with members coming to the table to solve a dilemma based on their own unique information. Indeed, effective teams are able to identify a problem, gather relevant information, and evaluate and select alternatives to the problem that emerge from the relevant information (e.g., Abelson & Levi, 1985; Donaldson & Lorsch, 1983; Janis, 1982; Kahneman, Slovic, & Tversky, 1982; Simon, 1976). Not only must high-power teams in the organization, such as top management teams, rely on their collective decision-making ability to perform their jobs (e.g., Henderson & Fredickson, 1996), low-level teams (e.g., customer service, production) are being increasingly given analogous responsibilities that require them to regularly make collective decisions about operating procedures, member roles, scheduling, and other issues (LaFollette, Hornsby, Smith, & Novak, 1996; Roming, 1996; Wellins, Byham, & Dixon, 1994; Wellins et al., 1990). Additionally, this task also provides the advantage of a clear objective performance outcome, providing a reliable measure of performance (McGrath, 1984).
Measures

A baseline survey was given before the task to assess interpersonal power congruence. A follow-up survey was administered immediately following the task to ask about group dynamics specifically during the decision-making task, such as the level of conflict perceived by team members. All survey questions were answered on a 1-7 scale, with 1 being low agreement with the item and 7 being high agreement. These measures were complemented by coder ratings of video-tapes of the team’s interaction during the task.

Team Power

Our distinction between high- and low-power teams was based on the organizational level of the teams. Fitting our definition of team power, teams that had control over other teams and/or had the ability to make decisions that would impact the whole company were classified as high-power teams. This ranking was done separately by two experts of the company (one internal, one external) using organizational charts and company knowledge. Initial inter-rater agreement was 98%. The rating for the one team that was disagreed upon was discussed and resolved. Twelve teams were then identified as high-power teams, and thirty teams were identified as low-power teams. Our team power variable is thus a dichotomous variable where -1 represents low-power teams, and 1 high-power teams. In addition, as a manipulation check, we also asked teams whether they occupied low- or high-power positions in the company. This manipulation check was successful as high-power teams reported occupying more high-power positions than low-power teams ($t=-4.43$, $p<.001$).

Of the twelve teams identified as high-power teams, five teams were management teams, such as supervisory teams of business units (e.g., the management team of the internal auditing department), while seven teams were policy setting teams in the company who did not have teams reporting directly to them but still who controlled enormous resources in the organization and had a large impact on company policy (i.e. the advisory teams for organizational communications or the human resources department). The low power teams included, for example, secretarial teams
and lower levels teams in the departments of the management teams, such as teams of junior auditors. We did not find any significant differences to exist between the different types of high-power teams or different types of low-power teams in a multivariate analysis on the variables in our study. This suggests that our results are likely only due to the power of the team in the organization, rather than to certain responsibilities or issues attached only to certain team functions, such as management teams.

Power Congruence

Individual-level power was measured on the basis of a round robin question wherein team members had to respond to the question “How much influence does each member of your team have within the team?” for each of the members in their team, including themselves. Self-perceptions of power were based on participants’ responses for themselves, and other-perception of power was based on the average of how each participant was rated by his or her other members. In rating the power of other members of the team, members showed high agreement with each other ($ICC[1] = .49$, $ICC[2] = .88$, $F[1,274] = 5.71$, $p < .001$; $rwg = .90$).

To calculate the degree to which members’ power self-views were congruent with how others in the team viewed them, we followed the procedure employed by Polzer et al. (2002). We first calculated an individual-level incongruence score for each participant. To accomplish this, we calculated the absolute difference between the individual’s power self-view and each other member’s appraisal of that individual’s power. We then took the average of these difference scores across all team members who rated the focus individual, which resulted in an individual level incongruence score for the focal individual. Significant F-tests, ICCs, and rwg scores confirmed the appropriateness of aggregating power congruence ($ICC[1] = .19$, $ICC[2] = .44$, $F = 106.71$, $p < .001$; $rwg = .78$) to the team level (Klein & Kozlowski, 2000). To obtain a team level incongruence score, we averaged the individual level incongruence score of all team members. This team level incongruence score was then reverse coded to reflect congruence, rather than incongruence, to ease interpretation of results.
Intragroup Conflict

Intragroup conflict was assessed by coders who rated the videos of the team task as well as by self-report measures of team members as given during the post-task survey about their experience during the task. Such triangulation of measures is especially important in studies of intragroup conflict, as De Dreu and Weingart (2003) note that too much of past conflict research has relied purely on self-report survey measures, which may not necessarily be as insightful as other more objective methods, such as behavioral ratings.

For the video coder ratings, two coders, blind to the hypotheses, rated each of the videos of the interactions of each of the teams during the 15-minute decision-making task. For their ratings, they answered the scale items of the intragroup conflict scale of Jehn (1995) for task and relationship conflict and the scale of Jehn and Mannix (2001) for process conflict on a scale of 1 to 7 (7 indicating high agreement). The coders exhibited high reliability in their rankings (for task conflict, $r_{wg} = .98$, for relationship conflict, $r_{wg} = .78$, for process conflict, $r_{wg} = .99$). Additionally, the internal reliability of the scales for each conflict type was sufficient (task conflict $\alpha = .75$, relationship conflict $\alpha = .91$, process conflict $\alpha = .95$), and a factor analysis showed high discriminant validity for the conflict types as well (three distinct factors, with all loadings above .79).

For the self-report ratings, we used the same measures – the scales of Jehn (1995) for task and relationship conflict and the scale of Jehn and Mannix (2001) for process conflict. These measures again showed sufficient internal reliability (task conflict $\alpha = .92$, relationship conflict $\alpha = .84$, process conflict $\alpha = .91$) and discriminant reliability as well (three distinct factors, with all loadings above .78). Additionally, we found support for averaging individual team member responses to the team level, as supported by significant F-tests and inter-class correlation coefficients (ICCs) (task conflict: ICC[1] = .33, ICC[2] = .79; relationship conflict: ICC[1] = .26, ICC[2] = .73, process conflict: ICC[1] = .27, ICC[2] = .74).

These two methods – self-report survey ratings and video-coder ratings of actual behavior – were then triangulated together to form our measure of conflict. There was high agreement between these two methods (task conflict: $r_{wg} = .83$; relationship conflict: $r_{wg} = .89$; process conflict:...
\(r_{wg} = .91 \), so the two measures were averaged together for each conflict type to form the final measure of conflict.

Task Performance

Task performance was assessed by the number of correct answers the teams had for the logic puzzle. For each correct match (e.g., identifying a manager with the correct project he managed), teams received a point. Scores could potentially range, and did actually range, from 0 to 20.

Controls

We initially controlled for gender diversity, national diversity, educational heterogeneity, job department, average team and organizational tenure, team size, and a video-rating of task focus (‘How focused was this team on the task?’, \(r_{wg} = .89 \)). However, initial regression tests showed that only national diversity, team and organizational tenure, and task focus significantly affected our model, so they were the only variables included in ensuing analyses.

Analysis

We tested our hypotheses using hierarchical regression analysis. All variables were centered, according to the procedure of Aiken and West (1991).

Study 2 Results

Means, standard deviations, and correlations are presented in Table 1. As seen in Table 1, team power has a significant positive relationship with all three conflict types and a significant negative relationship to task performance.
Table 2. Study 2 means, standard deviations, and correlationsa

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>s.d.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. National Diversity</td>
<td>.35</td>
<td>.26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Team Tenure</td>
<td>3.65</td>
<td>.40</td>
<td>-.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Organizational Tenure</td>
<td>8.78</td>
<td>.61</td>
<td>-.38*</td>
<td>.38*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Task Focusb</td>
<td>3.07</td>
<td>1.39</td>
<td>-.15</td>
<td>.17</td>
<td>.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Team Powerc</td>
<td>--</td>
<td>--</td>
<td>-.11</td>
<td>.25</td>
<td>.45**</td>
<td>-.09</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Power Congruence</td>
<td>.78</td>
<td>.41</td>
<td>-.13</td>
<td>.16</td>
<td>.32</td>
<td>.06</td>
<td>.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Task Conflictb</td>
<td>2.32</td>
<td>.79</td>
<td>-.21</td>
<td>.18</td>
<td>.04</td>
<td>-.07</td>
<td>.47**</td>
<td>-.24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Relationship Conflictb</td>
<td>1.52</td>
<td>.38</td>
<td>-.07</td>
<td>.17</td>
<td>.25</td>
<td>-.15</td>
<td>.48**</td>
<td>-.19</td>
<td>.65**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Process Conflict</td>
<td>2.38</td>
<td>1.08</td>
<td>-.36*</td>
<td>.12</td>
<td>.14</td>
<td>-.10</td>
<td>.36**</td>
<td>-.11</td>
<td>.48**</td>
<td>.43**</td>
<td></td>
</tr>
<tr>
<td>10. Task Performance</td>
<td>6.59</td>
<td>4.06</td>
<td>.30*</td>
<td>-.22</td>
<td>-.19</td>
<td>.23</td>
<td>-.30*</td>
<td>-.12</td>
<td>-.18</td>
<td>-.33*</td>
<td>-.32*</td>
</tr>
</tbody>
</table>

a p < .10. * p < .05. ** p < .01. a n=42 b n=37 c dichotomous variable
To test our first hypothesis, we used hierarchical regression analysis to investigate if high-power teams differed from low-power teams in the amount of intragroup conflict present in the team. As seen in Table 2, this was supported as high-power teams had a significantly higher amount of conflict than low-power teams: high-power teams had higher levels of task conflict ($\beta = .47, p < .05$), relationship conflict ($\beta = .37, p < .05$), and process conflict ($\beta = .52, p < .05$).

In our second hypothesis, we proposed that power congruence would moderate the relationship between team power and conflict, such that when high-power congruence existed within the team, team power would be less positively related to conflict. This was supported for process conflict ($\beta = .51, p < .05$). The interaction plot, as seen in Figure 2, revealed an ordinal interaction, such that power congruence did not appear to affect low-power teams, but for high-power teams, when power congruence was high, team power was less positively related to process conflict. We did not find effects of power congruence on the relationship between power and either task or relationship conflict.

Table 3. Results of hierarchical regression analysis

<table>
<thead>
<tr>
<th>Step 1.</th>
<th>Intragroup Task Conflict</th>
<th>Intragroup Relationship Conflict</th>
<th>Intragroup Process Conflict</th>
</tr>
</thead>
<tbody>
<tr>
<td>National Diversity</td>
<td>-.14</td>
<td>.18</td>
<td>-.35</td>
</tr>
<tr>
<td>Team Tenure</td>
<td>.14</td>
<td>-.04</td>
<td>.34</td>
</tr>
<tr>
<td>Organizational Tenure</td>
<td>.32</td>
<td>.45*</td>
<td>.11</td>
</tr>
<tr>
<td>Task Focus</td>
<td>-.05</td>
<td>-.16</td>
<td>-.20</td>
</tr>
<tr>
<td>F</td>
<td>2.41</td>
<td>2.53</td>
<td>3.04*</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2.</th>
<th>Team Power</th>
<th>Power Congruence</th>
<th>F</th>
<th>R^2 / Adj. R^2</th>
<th>ΔR^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Team Power</td>
<td>.47*</td>
<td>.15</td>
<td>3.11*</td>
<td>.39/.27</td>
<td>.13</td>
</tr>
<tr>
<td>Power Congruence</td>
<td></td>
<td>-.19</td>
<td></td>
<td>.42/.30</td>
<td>.15</td>
</tr>
<tr>
<td>R^2 / Adj. R^2</td>
<td></td>
<td>.52*</td>
<td></td>
<td>.49/.36</td>
<td>.14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 3.</th>
<th>Team Power X Power Congruence</th>
<th>F</th>
<th>R^2 / Adj. R^2</th>
<th>ΔR^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Team Power X Power Congruence</td>
<td>-.01</td>
<td>-.05</td>
<td>2.58*</td>
<td>.39/.24</td>
</tr>
<tr>
<td>Power Congruence</td>
<td></td>
<td></td>
<td>2.90*</td>
<td>.42/.28</td>
</tr>
<tr>
<td>R^2 / Adj. R^2</td>
<td></td>
<td></td>
<td>.51*</td>
<td>.57/.43</td>
</tr>
</tbody>
</table>

p=37 $p < .10$, $*p < .05$, $**p < .01$, $***p < .001$
In our third hypothesis, we proposed that intragroup conflict would be negatively related to team performance. This hypothesis was supported for process conflict ($\beta = -.38, p < .05$) as process conflict had a significant negative effect on team decision-making performance. This hypothesis was also supported for relationship conflict ($\beta = -.33, p < .05$), as relationship conflict also had a significant negative impact on team decision-making performance. We did not find a significant effect of task conflict on team performance.

In our fourth and final hypothesis, we proposed that conflict would mediate the relationship between team power and task performance. We find support for this. Specifically, we find that team power is significantly related to both process and relationship conflict (as shown in table 2) and task performance ($\beta = -.30, p < .05$), that both process and relationship conflict are significantly, negatively related to task performance, and, finally, that the significant relationship between team power and task performance disappears ($\beta = -.03, n.s.$) when process and relationship conflict are added into the equation. We also tested for mediation with a Sobel test, which yielded a significant result as well (mediation by
relationship conflict: $z = -1.90, p < .05$; mediation by process conflict: $z = -2.08, p < .05$). Process and relationship conflict were thus found to mediate the relationship between team power and decision-making performance.

Study 2 Discussion

In this multi-method quasi-experimental field study, we find that powerful teams demonstrate significantly poorer decision-making ability than low-power teams on a decision-making task. This effect is fully explained by the higher levels of performance-detracting process and relationship conflict in high-power teams. We do find a situation though where team power is not always negative – specifically, when high-power teams have a clear idea of the relative balance of power within their team, they are likely to have lower levels of conflict and therefore better team decision-making performance. This suggests a potential pathway for managers to utilize to improve the performance of the high power teams in their organizations.

General Discussion

Across two studies, we have shown that high-power teams perform worse than low power teams. In both studies, we find these effects can be fully explained by the higher levels of process and relationship conflict present in high-power teams - high-power teams have significantly more process and relationship conflict, and process and relationship conflict are significantly, negatively related to team performance. A strength of this chapter is showing these findings in different organizational contexts (including the financial and telecommunications industries) and on different outcome variables, including general team performance in its daily life in the organization as well as team performance in a controlled setting on a collective decision-making task. Additionally, this chapter offers hope to managers by showing that when team members establish a clearly agreed upon hierarchy within the team, the negative effects of team power on may be avoided.

These findings offer several contributions to existing research. First of all, our findings extend existing research on individual differences in power as well as research on team composition. Research in the field of
psychology has found, for example, that individuals in high-power positions are more responsive in setting priorities and using information than less powerful organizational members (Overbeck & Park, 2006). However, our findings suggest that when these powerful individuals are asked to utilize information and make decisions as a team, they are actually less effective than low-power teams. We find that this is because a high level of conflict impeded effective team decision-making and performance in high-power teams, suggesting that the interpersonal issues associated with a team of high-power individuals working together may override the cognitive benefits of being in power. We thus extend psychological research which has shown power at the individual level to decrease perspective taking and understanding of others (e.g., Galinsky et al. 2006; Keltner & Robinson, 1997) by showing that power may indeed lead to impaired interpersonal interactions in a team environment. Relatedly, our findings also extend research on team composition (e.g., Harrison & Klein, 2007; Mannix & Neale, 2005) by finding significant differences in conflict and task performance based on differences in power composition between and within teams. Our chapter thus shows power to be a new and important determinant of team composition to account for when studying team dynamics.

Secondly, our findings contribute to research on top management teams (TMTs). Though there is some variance in how past researchers have defined TMTs (e.g., Hambrick & Mason, 1984; Carpenter et al., 2004; Keck, 1997), we believe that most conceptualizations of TMTs can be classified as a form of high-power team. Indeed, despite many variations in composition, TMTs have remarkably consistent effects on firm outcomes, suggesting that they operate mainly through a significant and shared characteristic like power (Carpenter et al., 2004). However, the specific role of power in shaping TMT dynamics has not received much investigation (c.f. Certo, Lestor, Dalton & Dalton, 2006), nor have the underlying team dynamics or processes of TMTs (c.f. Certo et al., 2006; Vyakarnam & Handelberg, 2005). Our findings may therefore be of relevance for researchers in the TMT field. Specifically, our results show that high-power teams may actually have poorer performance than low-power teams when high-power teams lack a clear internal hierarchy within
their team. Our findings therefore point to the importance of internal hierarchies within TMTs in helping them to achieve better team performance.

Thirdly, our findings contribute to research on identity processes in organizations by providing an example of how the importance of identity verification and interpersonal congruence processes can vary across team contexts. Specifically, our findings suggest that power congruence appears to have a larger impact on members of high-power, rather than low-power teams. This may be because high-power contexts make the power of team members a characteristic of paramount importance. Indeed, an individual’s power in some part of the organization is often a significant aspect of how the individual gains legitimacy on a high-power team. Past literature has demonstrated that when individuals consider a characteristic to be important, verification (or the lack thereof) becomes a greater and more influential concern (Swann & Pelham, 2002). Our results add nuance to this finding by suggesting that a characteristic’s importance may not only be determined by an individual’s personal feelings, but also by the team context in which he or she operates. In addition, the results suggest that a characteristic’s importance moderates consequences not only for individuals, but also for teams.

Lastly, our findings contribute to the intragroup conflict literature (e.g., De Dreu, 2007; De Dreu & Weingart, 2003; Jehn & Bendersky, 2003) by looking at an important new antecedent of conflict – team power-level. Our findings across both studies suggest that a team’s power in the organization, as well as the internal power balance within the team, may have a substantial impact on the conflict that occurs in the team. This extends past research on the antecedents of intragroup conflict which has primarily focused on demographic characteristics (e.g., Jehn, Northcraft, & Neale, 1999; Pelled, Eisenhardt, & Xin, 1999) by showing a new and important factor of team composition which may influence intragroup conflict. Additionally, we found, in line with a growing amount of evidence (e.g., Greer & Jehn, 2007; Jehn, Northcraft, & Neale, 1999; Matsuo, 2006), that process conflict is negative for team decision-making performance. While past research has suggested that process conflict may benefit performance through improving task-fit (cf. Jehn & Bendersky, 2003),
other research has suggested that process conflict may be negative for performance because of the high emotionality associated with issues such as task delegation and its associated personal connotations (Greer & Jehn, 2007). Our findings therefore contribute to this debate by showing support for the proposition that process conflict is negative for team performance. While we do not find a strong effect of task conflict on objective performance measures in either study, this is not surprising. A recent meta-analysis by De Dreu and Weingart (2003) also did not find a strong effect of task conflict on team performance and suggested that the effects of task conflict may be largely contextual. As the focus of this chapter was on the impact of power on conflict and performance, we did not examine the many potential moderating factors of the relationship between task conflict and performance, but rather focused on the effects of power and power congruence on conflict and team performance. Future research would thus benefit from further investigation into the conditions in which task conflict is good or bad for team performance.

Future Directions and Limitations

The findings in these studies open up the possibility for several new research directions. Future research would benefit from further examination of factors that can ameliorate the negative relationship between team power and task performance. While we identified power congruence as one potential factor that may reduce conflict, and ultimately improve performance, in high-power teams, other such factors are possible, such as the quality of a team’s climate. Secondly, future research would benefit from examining ways in which teams can establish clear hierarchies. For example, clear communication of roles and team-building exercises which allow members to get to know each other better may help allow hierarchy formation. Future research would thus benefit from investigating the antecedents of power congruence in teams.

Managerial Implications

Our findings offer important implications for managers. Specifically, our findings highlight the precarious positions of high-power teams. As shown in this paper, high-power teams may suffer from a high
level of process and relationship conflict, which may negatively impact their team performance. As a manager, this does not mean that high-power teams should not be making decisions, but rather, that particular care should be taken in high-power teams to reduce process and relationship conflicts. One potential way to reduce such conflicts, as shown in this paper, is to make sure that members of high-power teams are clear about the relative power hierarchy within their own team. By clearly defining roles, explicitly recognizing the various bases of members’ power, and openly discussing power and relationships within the team, high-power teams can improve their power congruence and thereby boost their decision-making ability.

Conclusion

High-power teams are not always high performers. This is because members of high-power teams may have high levels of process and relationship conflict, which may interfere with effective decision-making and performance. In such situations, low-power teams are likely to outperform high-power teams. However, high-power teams do have the potential to overcome the potential pitfalls in their teams. By making clear the internal power balances within the team, high-power teams can become more effective decision makers. Both managers and management researchers can use these findings to better understand how teams high in power differ from teams low in power and to identify ways in which the performance of high-power teams can be improved.