Chapter 4

The Effects of Team Composition on Conflict Engagement

Based on Greer, Jehn, Thatcher & van Beest (2008)

Paralleling the dramatic rise of diversity within organizations, interest in diversity research has soared. Despite this rise in research, results about the effects of diversity on team processes and outcomes remain largely contradictory (Jackson, Joshi, & Erhardt, 2003; Mannix & Neale, 2005; Stewart, 2006; Williams & O’Reilly, 1998). The concept of demographic faultlines has arisen as a possible means of explaining the conditions under which diversity will have either positive or negative effects. Demographic faultlines occur when demographic characteristics align within a team in such a way as to create a clear dividing line between dissimilar team members (Lau & Murnighan, 1998). While a growing number of studies have examined the group-level effects of faultlines (e.g., Barkema & Shvyrkov, 2007; Gibson & Vermeulen, 2003; Hart & Van Vugt, 2006; Homan, Van Knippenberg, Van Kleef, & De Dreu, 2007a, 2007b; Lau & Murnighan, 2005; Li & Hambrick, 2005; Molleman, 2005; Pearsall, Ellis, & Evans, 2008; Polzer, Crisp, Jarvenpaa, & Kim, 2006; Rico, Molleman, Sanchez-Manzanares, & Van der Vegt, 2007; Sawyer, Houlette, & Yeagley, 2006; Shaw, 2004; Thatcher, Jehn, & Zanutto, 2003), the majority of studies have only examined situations in which a faultline divides a team into two equal-sized subgroups, such as a team containing three female consultants and three male engineers. This is in spite of the fact that situations in which a single member is excluded from a larger subgroup are quite common in organizational settings.

We extend existing faultline research by distinguishing between different forms of faultline placement – specifically, between demographic faultlines that create a solo-split (where a demographic faultline divides a
single member from the rest of the group) and faultlines that create a
coaitional split (where a demographic faultline in a group divides subgroups
from each other); see Figure 1 for a graphical depiction of how faultline solo-
splits differ from faultline coalitional splits. For example, as seen in Figure 1,
a faultline solo-split occurs in a team containing one female consultant and
five male engineers, whereas a faultline coalitional-split occurs in a team
containing three female consultants and three male engineers. In this chapter,
we will investigate how these different forms of faultline placement may lead
to important differences between teams, but also between individuals within
the same team.

Overview of Studies

In the three studies in this chapter, including a quasi-experiment, a
survey, and a laboratory experiment, we show that faultline placement can
have an important impact on team and individual conflict engagement and
performance. In Study 1, we show the general relevance of faultline placement
for team conflict and performance in a quasi-experiment. We show that teams
with a faultline solo-split differ from teams with a faultline coalitional-split in
terms of their lower intragroup conflict and lower team performance.

In our next two studies, we investigated the theoretical underpinnings of
these findings. We investigated how the solo-member within a solo-split team
differed from subgroup members, and how these differences could explain
why a team with a solo-member had much less conflict and worse
performance than a team with all subgroup members. In a survey study in
Study 2, we show that solo members perceived themselves to perform worse
than subgroup members, and that this was explained by the fact that they
experienced higher levels of relationship conflict than other group members.
In a laboratory experiment in Study 3, we show why solos perceived more
relationship conflict than subgroup members - they experienced higher levels
of relationship problems (discrimination and goal obstruction), but were
unwilling to speak out about these problems to their other group members, so
other group members were often unaware of the solo member’s problems.
Together, these studies explain why in solo-split teams, as shown in Study 1,
less conflict occurs than in coalitional-split teams - solo-members find
themselves in precarious positions that do not allow them to engage their team
in conflict.

Figure 1. Faultline solo-splits compared to traditional faultline coalitional splits

```
Solo-split                          Traditional Coalitional Split
FC*                        ME**
ME                        ME
ME                        ME
ME                        ME

FC                        ME
FC                        ME
FC                        ME
```

*FC= Female consultant **ME=Male engineer

Study 1: The Team-level Effects of Faultline Placement

In this first study, we examine whether teams with faultline solo-splits differ from teams with faultline coalitional-splits in terms of their intragroup conflict and performance. We propose that teams with faultline solo-splits will have lower levels of intragroup conflict and team performance than teams with faultline coalitional-splits. In the following section, we will lay out the rationale for this in detail.

Theoretical Background

The effects of demographic faultlines on group processes and performance are often explained using the theories of similarity-attraction, social identity, and social categorization. The similarity-attraction paradigm posits that group members are attracted to similar others (Byrne, 1971), such that members who share a demographic characteristic will be likely to form a subgroup on the basis of the mutual similarity. Social categorization theory argues that the categories that people base their identities on (and thus admire in similar others) proscribe their behavior. When social identities are salient, people will strive to enhance themselves by making their in-group appear
superior to the out-group (Tajfel & Turner, 1986; Turner, 1987). To accomplish this, members may exhibit pride and loyalty to their in-group and derogatory and prejudiced attitudes and behavior toward the out-group (Messick & Mackie, 1989). These processes over time may lead to a breakdown in communication between subgroups (e.g., Lau & Murnighan, 2005) and the eventual polarization of the different subgroups from each other (c.f. Lau & Murnighan, 1998). We propose that faultline placement (whether the faultline creates a solo-split or coalitional split) determines the degree to which these social psychological mechanisms impact team processes and outcomes. While past research has explored whether processes such as these lead faultlines to be associated with higher levels of conflict (e.g., Lau & Murnighan, 2005; Li & Hambrick, 2005; Polzer et al., 2006; Thatcher et al., 2003), research has yet to investigate how the effects of faultlines might vary depending on the placement of the faultline in the group – whether the faultline divides two subgroups from each other or whether the faultline separates a single member from a larger subgroup.

In this chapter, we specifically focus on the group process of conflict as explaining the effects of faultline placement on team and individual performance. Because our study examines team composition, conflict is a particularly relevant construct, as past theory and research has often suggested that these two concepts - team composition and conflict - are closely related (e.g., Jehn, Northcraft, & Neale, 1999; Pelled, Eisenhardt, & Xin, 1999). Additionally, conflict has been found to be a major contributor to the effects of group processes on outcomes such as performance or satisfaction (e.g., Amason, 1996; De Dreu & Weingart, 2003; Jehn, 1995; 1997). Past conflict research has identified three main types of conflict: task conflict, relationship conflict, and process conflict (Jehn, 1997). Task conflicts typically involve disagreements about the task being performed, such as disagreements about what strategic goal to pursue; relationship conflicts are disagreements about personal issues and incompatibilities; and process conflicts are disagreements about logistical issues, such as the assignment of responsibilities or the setting of an agenda (Jehn, 1997). In the following sections, we discuss potential differences between teams with faultline solo-splits or faultline coalition-splits in terms of their levels of intragroup conflict and then discuss the implications of this for group performance.
Effects of Faultline Solo-Splits on Intragroup Conflict and Team Performance

We propose that teams with faultline solo-splits will have lower levels of all three types of intragroup conflict – task, process, and relationship- than teams with faultline coalitional-splits. This is based on past research which has shown that in certain situations, solo members tend to conform rather than express their opinion in the face of a unified majority (Asch, 1952; Latane & Wolf, 1981; Tanford & Penrod, 1984). Asch’s (1952; 1956) classic work on conformity demonstrated the extreme power a majority can exert over a minority member, causing minority members to conform to the majority opinion and discard their own opinion, even if they believed it to be true. In faultline situations, where the solo member is dissimilar from the other group members on multiple characteristics, these effects could be expected to be even stronger, implying that teams with faultline solo-splits will have markedly lower levels of conflict than teams with faultline coalitional-splits. A possible explanation for this is that people who express dissenting opinions risk social disapproval from others (Schachter, 1951; Wood, Lundgren, Oullette, Buscene, & Blackstone, 1994), and solo members may consciously recognize that expression of their views may result in the majority subgroup members liking them less if they express a different perspective (Deutsch & Gerard, 1955). Therefore, solo-split groups may be likely to have low levels of all types of conflict within their group as solo members may not wish to engage the majority subgroup members in debate.

In contrast, when a faultline coalitional-split (where each subgroup has two or more members) exists within a team, neither coalition should have trouble expressing their opinion because of increased feelings of social support (Lau & Murnighan, 1998). As seen in the Asch experiments (1952; 1956) and confirmed in later work (e.g., Bragg & Allen, 1972), the presence of just a single additional dissenting minority member dramatically increases the ability of dissenting members to hold to their beliefs and avoid conforming to the majority. This occurs because of feelings of social support (c.f. Lau & Murnighan, 1998) and increased feelings of psychological safety (Edmondson, 1999). In these situations, conflicts of all types become more open confrontations as both sides express their views of each other –over both
CHAPTER 4 - COMPOSITION AND CONFLICT ENGAGEMENT

interpersonal and work-related problems. This willingness to engage in conflict is likely to be even further exacerbated by the higher levels of competition likely to be present in teams with different subgroups. In coalesional-split groups, subgroup members’ support for subgroup interests can lead to competition between different subgroups (Insko & Schopler, 1987; Wildschut, Insko, & Gaertner, 2002), as subgroup members work to favorably influence their own outcomes even at the expense of members of other subgroups (Polzer, Mannix, & Neale, 1998). In such situations, conflicts are more likely than in solo-split teams, where the solo-members are unable to challenge the dominant subgroup because of a lack of social support. We therefore propose:

Hypothesis 1. Groups with solo-split faultlines will have lower levels of intragroup conflict (task, relationship, process) than groups with coalesional-split faultlines.

When solo members do not express their views within the group, the value of diversity may be lost (Cox, Lobel, & McLeod, 1991). The tendency for conformity to overpower the potential benefits of diversity in teams has been often lamented in the diversity literature (e.g., Milliken & Martins, 1996; Riordan, 2000; Williams & O’Reilly, 1998). This is because, as in faultline solo-split teams, when the diverse members in their teams do not challenge the perspectives of the majority, groupthink may occur. This can negatively impact performance as groupthink can lead to errors in group decision making (Janis, 1982). Therefore, in solo-split teams, when the diverse member of the team - the solo - does not feel able to speak up or engage in conflict, the performance of these teams may suffer as groupthink may then impair the team’s ability to make decisions and perform. In contrast, in coalesional-split groups, members are likely to be vocal during group processes because of increased feelings of social support and psychological safety from their subgroups (Edmondson, 1999). In such situations, the conflict between subgroups can help reduce groupthink and prevent premature consensus, leading to higher quality decisions (e.g., Brodbeck et al., 2002; Janis & Mann, 1977; Schulz-Hardt et al., 2006). This is in line with past faultline and intergroup relations research which shows that competition between subgroups, such as in the case faultline coalesional-splits, can enhance team
learning, decision-making processes, and effectiveness (e.g., Gibson & Vermeulen, 2003; Mulvey & Ribbins, 1999). Additionally, research in the area of conflict suggests that the challenging of opinions can improve group members’ understanding of the task at hand and the resulting quality of group decisions and performance (e.g., Fiol, 1994; Janssen, Van de Vliert, & Veenstra, 1999; Pelled, Eisenhardt & Xin, 1999; Putnam, 1994; Schweiger, Sandberg, & Rechner, 1989). For these reasons, we therefore propose:

Hypothesis 2. Groups with solo-split faultlines will have lower performance than groups with coalitional-split faultlines.

To tie together the above hypotheses, we further propose that:

Hypothesis 3. Intragroup conflict will mediate the effects of faultline placement (whether the faultline creates a solo-split or coalitional-split) on team performance.

Study 1 Methods

Sample

We tested our hypotheses during executive training courses in the United States. We examined 70 working groups, comprised of 326 high-level company employees from engineering companies and investment banking firms. Because our sample contains real working people, our findings may be more generalizable to organizational settings than traditional samples in field experiments. The average group size was 4.79, 24% of the participants were female, and 80% of the participants were white.

During the course, participants engaged in an information exchange exercise, similar to the traditional Stasser hidden profile task (e.g., Stasser & Titus, 1985), in which groups were required to solve a logic puzzle together. This task offers an appropriate test of our hypotheses as we are able to simulate the decision making processes of real groups, but control the amount of informational diversity held by each group member. This allows us to show that differences between different types of faultline placements do not stem from information imbalances, but rather stem from the unique demographic composition of the groups.

In the task, participants were given introductory information about the puzzle and then were all assigned an equal number of unique clues.
Participants were informed that no other participant had the same information, and that successful completion of the task would require putting together the various clues to come up with a joint solution. Group performance was determined by the number of correct answers the groups came up with in the logic puzzle.

Measures

Solo-splits

To identify solo-splits, we used the faultline algorithm developed by Thatcher, Jehn, and Zanutto (2003) and later updated by Bezrukova, Jehn, Zanutto, and Thatcher (2005). The faultline algorithm is calculated with the aid of the computer program SAS. The demographic variables included in our faultline calculations were gender, race, job function, and years working experience.\(^2\) Solo-splits were identified when the SAS output showed the strongest faultline split for a group occurring when just one person was excluded from the group. A dichotomous variable was then created to identify groups as containing or not containing solo-splits. Forty-eight of our seventy groups were identified as solo-splits, where the strongest faultline split was between a single dissimilar member and a subgroup consisting of similar members.

Because of the inequality in sample sizes between our two groups of comparison, we checked for Levene's test for equality of variances when comparing group processes and performance between solo-split groups and coalitional-split groups. This test was not violated for any of our hypothesized relationships.

Conflict

Conflict was measured using Jehn (1995)’s scale of intra-group conflict for task and relationship conflict, and Jehn and Mannix’s (2001) scale for intragroup process conflict. The task conflict scale consisted of six items

\(^2\) Because our solo-split variable allows the possibility of the solo-split occurring either on a functional faultline or a social category faultline, we wanted to verify that the solo experience was similar, no matter what the basis for the solo position was. We reran our analyses looking at functional solo-splits and social category solo-splits separately, as past research has suggested that functional diversity and social category diversity may have different effects on group processes and performance (Jehn, Northcraft, & Neale, 1999). We did not find any significant differences between functional-solo-splits and social category-solo-splits.
(i.e. “How much conflict of ideas was there in this team?”) and had a cronbach alpha of .84. The relationship conflict scale consisted of five items (i.e. “How much were personality clashes evident in this team during this exercise?”) and had a cronbach alpha of .79. The process conflict scale consisted of six items (i.e. “To what extent did this team disagree about the way to do things in their team?”) and had a cronbach alpha of .90. A factor analysis revealed three distinct factors with loadings of .58 or above.

Performance

Performance was measured by the task outcome. The task outcome was assessed by the number of correct answers the groups came up with in response to the logic puzzle, with a guessing penalty applied for incorrect answers.

Controls

We initially controlled for the effects of faultline strength, gender and race heterogeneity, team tenure, and organizational identity. We found none of these variables significantly affected our model in preliminary tests of our hypotheses using regression analysis (R^2=.03, Adjusted R^2=.03), and that the effect of faultline placement (whether the group was a solo-split or coalitional-split) on the variables in our study remained significant when controlling for these variables in a MANCOVA analysis ($F [1, 70] = 3.34, p < .05$).

Study 1 Results

Means, standard deviations, and correlations are presented in Table 1. To justify aggregation of our survey measures for the group-level analyses, we computed the intraclass correlation coefficients (ICC[1]s). The ICC[1]s and associated F-tests were all significant (task conflict = .29, $F [1,70] = 2.25, p < .001$; relationship conflict = .23, $F [1,70] = 1.88, p < .01$; and process conflict = .16, $F [1,70] = 1.58, p < .05$), confirming the appropriateness of aggregation (Klein and Kozlowski, 2000).
Table 1. Means, standard deviations (s.d.), and correlations among variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>s.d.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Faultline strength</td>
<td>.81</td>
<td>.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Solo split group</td>
<td>.81</td>
<td>.41</td>
<td>.33*</td>
<td>- .27*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Performance</td>
<td>4.55</td>
<td>3.30</td>
<td>- .07</td>
<td>- .27*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Task conflict</td>
<td>2.44</td>
<td>.67</td>
<td>- .19</td>
<td>- .48**</td>
<td>.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Relationship conflict</td>
<td>1.61</td>
<td>.55</td>
<td>.03</td>
<td>- .33**</td>
<td>.23</td>
<td>.58**</td>
<td></td>
</tr>
<tr>
<td>6. Process conflict</td>
<td>2.19</td>
<td>.74</td>
<td>.13</td>
<td>- .33**</td>
<td>-.12</td>
<td>.74**</td>
<td>.63**</td>
</tr>
</tbody>
</table>

*p < .05; ** p < .01. *n=70 groups. *Solo-split group is a dichotomous variable, with 0=coalitional-split group and 1=solo-split group.

A MANOVA was conducted as a global test of significance prior to hypothesis testing, entering faultline placement (whether the faultline created a solo-split or a coalitional-split) as the independent variable and the three conflict types and group performance as the dependent variables. The effect of faultline placement (whether the faultline created a solo- or coalitional-split) on intra-group conflict and performance was significant ($F_{1,70} = 4.71$, $p < .01$). To test our specific hypotheses, we conducted univariate analyses of variances (ANOVA) to compare the group level effects of solo-split groups and coalitional-split groups. The results of these tests, as well as the relevant means and standard deviations, are seen in Table 2.

Table 2. Hypothesized mean differences

<table>
<thead>
<tr>
<th>Variable</th>
<th>F</th>
<th>Solo-split Group</th>
<th>Coalitional-split Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task Conflict</td>
<td>17.18**</td>
<td>2.24</td>
<td>0.64</td>
</tr>
<tr>
<td>Relationship Conflict</td>
<td>7.20**</td>
<td>1.48</td>
<td>0.52</td>
</tr>
<tr>
<td>Process Conflict</td>
<td>7.10**</td>
<td>2.04</td>
<td>0.70</td>
</tr>
<tr>
<td>Group Performance</td>
<td>4.15*</td>
<td>4.09</td>
<td>3.24</td>
</tr>
</tbody>
</table>

*p < .05; ** p < .01

Our first set of hypotheses, which stated that solo-split groups would have lower levels of all three conflict types as compared to coalitional-split groups, was supported. Solo-split groups had significantly less task conflict than coalitional-split groups ($F_{1,70} = 17.18$, $p < .001$). In groups containing a solo member, there was significantly less conflict over work ideas as compared to groups containing two subgroups. Solo-split groups also experienced less relationship conflict than did coalitional-split groups ($F_{1,70}$...
When a solo member was present, relationship conflicts were not as pronounced as when two subgroups were present. Finally, solo-split groups experienced less process conflict than coalitional-split groups \((F[1,70] = 7.10, p < .01)\). As predicted, a group containing subgroups were more likely to have conflicts over logistical group issues than a group containing a single solo member and a majority subgroup. Our next hypothesis stated that solo-split groups would have lower objective performance scores than coalitional-split groups. Hypothesis 4 was supported, as solo-split groups performed significantly worse than coalitional-split groups \((F[1,70] = 4.15, p < .05)\).

Because past research suggests that intra-group conflict may mediate the relationship between diversity measures and group performance (e.g., Jehn et al., 1999), we also checked for mediation using hierarchically regression analysis, following the procedure established by Baron and Kenny (1986). As shown earlier, faultline placement was significantly related to task conflict \((\beta = -.48, p < .001)\), relationship conflict \((\beta = -.33, p < .01)\), process conflict \((\beta = -.33, p < .01)\), and performance \((\beta = -.27, p < .05)\). To test the next part of our mediation analysis, we examined the effects of conflict on performance. When entering the three conflict types into a regression together, we found that task conflict was positively related to performance \((\beta = .58, p < .01)\), process conflict was negatively related to performance \((\beta = -.79, p < .001)\), and relationship conflict was actually positively related to performance \((\beta = .39, p < .05)\). To test the final step of the mediation analysis, we examined if the effects of faultline placement on performance disappeared when conflict was controlled for. This step was supported, as after controlling for the three conflict types, faultline placement no longer significantly affected performance \((\beta = -.15, n.s.)\). Therefore, we found conflict to successfully mediate the relationship between faultline placement and performance, lending credence to our choice of conflict as a crucial intervening process in groups split by faultlines.

Study 1 Discussion

In Study 1, we introduced the concept of faultline solo-splits, where a single dissimilar group member is excluded from a demographically homogenous subgroup. While past faultline research has often focused on situations where two (or more) subgroups of two or more people are formed
within a group (e.g., Gibson and Vermeulen, 2003; Thatcher et al., 2003), situations in which a single member is excluded from a subgroup are quite common in organizational settings. Our results provide support for the proposition that the placement of a faultline in a group, whether it divides a team into subgroups or differentiates a single member from a subgroup, may have important implications for diversity and faultline theory and research.

When the placement of a faultline in a group differentiated a single member from a subgroup rather than a subgroup from another subgroup, we found that group processes were markedly different. Groups characterized by solo-splits experienced lower levels of all conflict types compared to coalitional-split groups. While solo-split groups experienced lower amounts of traditionally detrimental conflict forms such as relationship and process conflict than coalitional-split groups (De Dreu and Weingart, 2003), solo-split groups also experienced lower levels of task conflict. As moderate levels of task conflict on non-routine tasks may help group performance (Amason, 1996; Jehn, 1995), our findings reveal that a key challenge in managing solo-split groups will lie in finding ways to encourage all members of solo-split groups to express and argue for their different views during debates of work-related issues, but not on interpersonal and process issues.

Most interestingly, solo-split groups scored considerably lower than coalitional-splits on the external performance measure. This is consistent with the “value in diversity” hypothesis (Cox et al., 1991) - when the unique opinions of diverse members are not used in debate, group performance may suffer. By examining group processes as resulting from different forms of faultline splits, our study offers insight into why past results on the effects of diversity on performance have been inconclusive. The placement of faultline splits within groups, in addition to general heterogeneity or general faultline strength, may be one of the major driving forces of the effects of diversity upon group processes and outcomes. When a faultline differentiates a single group member instead of a subgroup, very different processes come into play. Our research thus offers an important extension to faultline theory by demonstrating the importance of the placement of the faultline for performance within groups. Additionally, our study shows that the mere presence of diversity alone is not enough to drive performance in a group. Especially in situations of solo-splits, group members need to not only listen to
the work-related opinions from diverse members, but also actively debate and challenge their opinions. This extends past research on minority influence (e.g., Phillips and Loyd, 2006; Phillips, Mannix, Neale, and Gruenfeld, 2004) by showing the importance of group level processes in determining the influence of minority members on team outcomes.

Study 2: Effects of Faultline Placement on Individual Differences within Teams

In Study 2, we examine the mechanisms underlying our findings in Study 1 by investigating whether the placement of a faultline in a team may lead to differences between members within the same team – whether solo members do indeed have different experiences in the team than subgroup members. Specifically, we examine whether solo members experience more or less conflict than other team members, and we look at the effects of this on individual performance. We define faultline solo members as solo members divided by a demographic faultline in their group from a majority subgroup on the basis of multiple demographic characteristics. We investigate whether faultline solo members experience more conflict than subgroup members – i.e. whether they have asymmetric perceptions of conflict in their group. We then examine whether being a faultline solo member impacts perceived individual performance. We contribute to existing faultline research by focusing on how the placement of a faultline may differentially impact members within the same team. Past faultline research has primarily focused on how faultlines may affect team processes and performance (e.g., Lau & Murnighan, 2005; Thatcher et al., 2003) and has overlooked the possibility that faultlines may lead members within the same team to have very different experiences from one another. We thus extend this research by investigating how different forms of faultline placement may differentially affect both the experiences and performance of different individuals within a team. Additionally, we build upon work which has found demographic composition to impact individual participation and knowledge sharing (Larson, Christenson, Abbott, & Franz, 1996; Phillips, 2003; Phillips, Mannix, Neale, & Gruenfeld, 2004; Wittenbaum, 1998; Wittenbaum, 2000) by looking at the effects of faultlines on within group differences in individual experiences and outcomes. Specifically, we focus on how within a team with a faultline, faultline-solo
members may differ from faultline-subgroup members in terms of conflict and performance. Lastly, we extend past research on tokenism and proportional representation in the organizational setting (e.g., Ely, 1995; Kanter, 1977; Niemann & Dovidio, 1998) by examining how findings on organizational tokens can be applied to explain differences in perceptions of and contribution to intragroup processes in the small group setting. Specifically, we look at how individuals who are solo members (i.e. tokens) differ in their perceptions of intragroup conflict from subgroup members in the team. This offers a first examination of how numerical representation may differentially affect members’ perceptions of conflict within the same team.

Theoretical Background

We propose that when faultlines create solo splits, solo members (members excluded from a majority subgroup) may have different perceptions and experiences of intragroup processes than other group members who are part of a demographic subgroup. Past research has shown that organizational solo members are in a position of heightened visibility (Niemann & Dovidio, 1998). This heightened visibility may make solo members more likely targets of prejudice and discrimination (Lau & Murnighan, 1998). Additionally, solo members are in a position which lacks the support and safety of a subgroup of similar members. These factors thus may lead solo group members to have different expectations and experiences of conflict in their group, which in turn may alter how well members may ultimately perform in their group.

The Mediating Role of Conflict Asymmetry

In line with past research which has identified conflict as having a large impact on individual performance and well-being (e.g., Bergman & Volkema, 1989; Dijkstra, van Dierendonck, & Evers, 2005; Jehn, 1995), we focus in this study on experiences of conflict as mediating the relationship between individual-level differences in faultline placement (whether an individual is a solo member or a subgroup member as a result of a demographic faultline split) on individual performance.

In this chapter, we propose that solo members may be more likely to experience conflict than subgroup members. These asymmetric perceptions of conflict are likely to exist for several reasons. First of all, past research has
proposed and found that ‘numerical distinctiveness’ may lead to the heightened visibility of an organizational solo member (Kanter, 1977; Niemann & Dovidio, 1998). Visibility has been shown to increase solo members’ own expectations of negative stereotypes, or stereotype threat (e.g., Goffman, 1963; Steele, 1997). This visibility, or distinctiveness, in turn may lead majority subgroup members to exaggerate the differences between themselves and the solo (e.g., Taylor, Fiske, Etcoff, & Ruderman, 1978). Such negative treatment of the solo member, such as discrimination or social exclusion, may lead the solo member to experience negative feelings such as anger (e.g., van Beest & Williams, 2006; Williams, 1997; Williams et al., 2000; Wong et al., 2003). This negative treatment and resulting negative emotions may increase a solo member’s experience of conflict compared to subgroup members. Relatedly, the solo member is the diverse member in a group with other members – the subgroup – who are demographically similar. The solo member, as the diverse member in the team, may have a potentially different way of approaching task and process issues within the team. For example, past research has suggested that members who differ from each other may have different ‘thought worlds’ (Doughtery, 1992). This implies that solo members may have different perspectives and experiences relating to the task, processes, and relationships in the team than subgroup members.

Secondly, past research on minority status within a group suggests that a solo member may be less likely to voice his or her ideas and more likely to conform to the opinion of the majority members (e.g., Asch, 1952, 1956; Bragg & Allen, 1972; Latane & Wolf, 1981; Tanford & Penrod, 1984). This is because the solo may suffer from both a lack of both social standing within the team as well as a lack of social support within the team (Lau & Murnighan, 1998). When solo members do not voice their opinion, others in the team may not become aware of the opinions or experiences of the solo member and may not perceive the same level of conflict as the solo member feels. For example, solo members may feel victims of discrimination and injustices (e.g., van Beest & Williams, 2006; Williams, 1997; Williams et al., 2000; Wong et al., 2003), but may not share these feelings with other group members and therefore other group members may not necessarily be aware of the conflict the solo member is experiencing. Therefore, we propose that solos are likely to experience higher levels of conflict than subgroup members.
Hypothesis 1. Solo members are more likely to experience conflict (task, relationship, process) than subgroup members.

We further propose that these differing conflict experiences will affect the performance of the individuals in the group. Initial research examining the idea of conflict asymmetry had found asymmetric perceptions to detract from group level outcomes (Jehn & Chatman, 2000) as well as satisfaction with mediation outcomes in dyadic negotiations (Jehn et al., 2006). In this study, we propose that higher, asymmetric perceptions of conflict are likely to impact individual performance for several reasons. First of all, past research has suggested that conflict may lead to a decrease in individual performance because of distraction from the task at hand and misspent time and energy (c.f. Jehn & Bendersky, 2003). This is likely because conflicts are often tightly linked to negative emotions, such as anger (Jehn & Bendersky, 2003; Pinkley, 1990; Thomas, 1992). Negative emotions such as this may overrun and oversimplify rational reasoning (c.f. Brief & Weiss, 2002; Thomas, 1992). Therefore, members experiencing higher levels of conflict can be expected to have lower performance due to more disengagement from the task, both cognitively and physically, than other group members. Secondly, the experience itself of having asymmetric perceptions from other group members, such as in the case of a member perceiving a higher level of conflict than other group members, may impair individual performance. This is because when a member has an asymmetric view from other group members, the member is unable to verify his or her perceptions of reality. Such verification processes are thought to be critical for member comfort and performance within the group (Swann, 1999). Additionally, when members hold an asymmetric view, they may also have higher feelings of injustice as they perceive conflicts that others do not and are therefore not being addressed. Feelings of injustice have been found to be associated with discomfort and feelings of inequity within the group (Lind & Tyler, 1988; Tyler, 1986), which may also distract an individual from task performance. Therefore, we propose that individuals experiencing higher, more asymmetric levels of conflict compared to other group members will have lower levels of performance.
Hypothesis 2. Asymmetric conflict perceptions (task, relationship, process) will be negatively related to perceived individual performance.

Finally, we draw together our hypotheses by proposing that the likelihood of solo members to experience heightened levels of conflict will explain the lower performance of solo members. Therefore, we propose: Hypothesis 3. Asymmetric perceptions of conflict (task, relationship, process) will mediate the relationship between faultline placement and perceived individual performance.

Study 2 Method

Sample
We surveyed 103 employees (26 teams) of the sales unit of a telecommunications company in the Netherlands. Seventy-eight percent of the participants were male, the average age was 41, and the average group size was 4.48.

Measures
All teams surveyed exhibited faultlines. This was based on the actual, objective demographic characteristics present in the group. We specifically looked at faultlines based on gender and educational level.

Faultline Placement
Faultline placement – whether the member was a solo or subgroup member – was assessed by whether the demographic faultline in a team divided two subgroups or a single member from a subgroup. In the latter situation, the single member dissimilar from the larger subgroup was identified as a solo-member, and other members were identified as subgroup members. As a manipulation check, we also asked participants whether they perceived themselves as being a solo member with three questions (e.g., “How alone do you feel in this team?”). The three items exhibited high reliability ($\alpha=.87$). The manipulation check was successful as solo members reported higher feelings of being a solo than did subgroup members ($F(1, 103) = 5.29, p$
< .05; Solo members: $M = 2.37, SD = .27$, subgroup members: $M = 1.68, SD = .13$).

Asymmetric Conflict Perceptions

Task and relationship conflict were assessed using the scale of Jehn (1995), and process conflict was assessed using the scale of Jehn and Mannix (2001). All three scales exhibited high internal reliability (task conflict: $\alpha = .90$; relationship conflict: $\alpha = .80$; process conflict: $\alpha = .91$), as well as sufficient discriminant validity (a factor analysis revealed three distinct factors, with all loadings above .80).

The degree to which member perceptions were asymmetric for each conflict type was then calculated by a group-mean deviance score (the individual conflict score minus the mean conflict score of other group members). This score thus reflects the degree to which the member perceived more or less conflict in the group than other group members, with positive scores reflecting higher perceptions of conflict than other group members and negative scores reflecting lower perceptions of conflict than other group members.

Perceived Individual Performance

Perceived individual performance was assessed on the basis of two self-report items (“I work effectively in this team” and “In general, I think I perform well within the group”; $\alpha = .85$).

Controls

As group-level characteristics, such as team size, team tenure, and objective faultline strength (the number of characteristics the faultline was based upon), may affect the experiences of solo members, we control for them in our model.

Analysis

The individuals in this study were members of existing organizational teams. Group-level variables, particularly the strength of group-level faultlines (both perceived and objective), are likely to affect the degree to which individual perceptions of solo status affect conflict.
and performance. This nonrandom assignment, as well as these group level variables, needed to be accounted for in our data analysis.

Hierarchical linear modeling, or HLM, can be used to control for the lack of independence in the dependent variable caused by the nesting within raters (Bryk & Raudenbush, 1992). HLM is able to overcome the limitations of the other options, such as aggregating all variables or running everything at the individual level of analysis, by simultaneously investigating both with- and between- group effects on an individual-level dependent variable (Hofman, Griffin, & Gavin, 2000). To accomplish this, HLM utilizes an empirical Bayesian estimation process in which models at both levels are estimated iteratively. Parameter estimates and standard errors are based on the group-level sample weighted by the reliabilities of the individual-level dependent variable in each group. Therefore, we utilize hierarchical linear modeling (HLM) to test our proposed relationships.

To calculate the explained variance in HLM, we use the formula suggested by Kreft and de Leeuw (1998) and Singer (1998) where the difference between the unrestricted error and restricted error in the model is divided by the unrestricted error.

Study 2 Results

Means, standard deviations, and correlations of our variables are displayed in Table 1. As seen, in the correlation table, faultline placement is significantly correlated with asymmetric perceptions of relationship conflict, and asymmetric perceptions of relationship conflict are negatively correlated with perceived individual performance.
Table 2. Study 2 means, standard deviations, and correlations

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>s.d.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Team Size</td>
<td>4.48</td>
<td>1.92</td>
<td>.16</td>
<td>.40*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Team Tenure</td>
<td>3.23</td>
<td>2.78</td>
<td>-</td>
<td>-.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Objective Faultline Strength</td>
<td>.51</td>
<td>.42</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Solo or Subgroup Member</td>
<td>1.81</td>
<td>1.17</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Task Conflict Asymmetry</td>
<td>1.12</td>
<td>.51</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>.09</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>6. Relationship Conflict Asymmetry</td>
<td>2.10</td>
<td>1.01</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>.23*</td>
<td>.28**</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>7. Process Conflict Asymmetry</td>
<td>1.21</td>
<td>.64</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-.07</td>
<td>.61**</td>
<td>-.02</td>
<td></td>
</tr>
<tr>
<td>8. Individual Performance</td>
<td>5.77</td>
<td>.84</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-.31**</td>
<td>-.12</td>
<td>-.20*</td>
<td>.04</td>
</tr>
</tbody>
</table>

*p<.05; **p<.01; ***p<.001. *a* individual level correlations, n=103
To verify we entered our variables into HLM at the right level of analysis (individual or group), we computed intra-class correlation coefficients for our variables of interests to determine whether or not they were varying significantly between groups. We did not find these variables - conflict asymmetry (task, relationship, and process) and perceived individual performance – to vary between groups (non-significant F-tests, ICC[1]s below .10), showing the appropriateness of examining these variables at the individual level. We therefore entered team size, team tenure, and faultline strength as Level 2 group-level, variables in HLM. We entered solo-or-subgroup member, conflict asymmetry (task, relationship, and process), and perceived individual performance as Level 1 individual-level, variables in HLM.

Table 4. Results of HLM analysis for Study 2

<table>
<thead>
<tr>
<th></th>
<th>Task Conflict Asymmetry</th>
<th>Relationship Conflict Asymmetry</th>
<th>Process Conflict Asymmetry</th>
<th>Individual Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ s.e.</td>
<td>γ s.e.</td>
<td>γ s.e.</td>
<td>γ s.e.</td>
<td>γ s.e.</td>
</tr>
<tr>
<td>Level 2 Variables:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Team Size</td>
<td>.11 .09</td>
<td>-.03 .04</td>
<td>.09 .08</td>
<td>.05 .07</td>
</tr>
<tr>
<td>Team Tenure</td>
<td>-.10 .09</td>
<td>.02 .04</td>
<td>-.06 .10</td>
<td>.04 .07</td>
</tr>
<tr>
<td>Faultline Strength</td>
<td>-.06 .06</td>
<td>.03 .03</td>
<td>.05 .05</td>
<td>-.01 .05</td>
</tr>
<tr>
<td>Level 1 Variables:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solo or Subgroup Member</td>
<td>.29 .17</td>
<td>.43* .18</td>
<td>.08 .16</td>
<td>-.51** .17</td>
</tr>
<tr>
<td>Task Conflict Asymmetry</td>
<td>-.04 .12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relationship Conflict Asymmetry</td>
<td>-.27** .09</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process Conflict Asymmetry</td>
<td>.01 .09</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R²</td>
<td>.04</td>
<td>.44</td>
<td>.12</td>
<td>.22</td>
</tr>
</tbody>
</table>

*p<.01; **p<.05.
Hypothesis Testing

Our first hypothesis proposed that solo members would experience higher, more asymmetric levels of conflict compared to subgroup members. As seen in Table 2, this hypothesis was partially supported. HLM analyses yielded a significant positive effect of solo status on relationship conflict asymmetry ($\gamma = .43$, $t = 2.41$, $p < .05$), such that solos experienced more relationship conflict than subgroup members. We did not find an effect of task or process conflict asymmetry.

Our second hypothesis proposed that higher, asymmetric perceptions of relationship conflict would be negatively related to perceptions of individual performance. This hypothesis was also supported. HLM analyses showed that relationship conflict asymmetry was significantly negatively related to performance ($\gamma = -.27$, $t = -3.19$, $p < .01$), such that members perceiving more relationship conflict than their other team members also reported the lowest individual performance. We did not find an effect of individual task or process conflict asymmetry on individual performance.

We then tested whether the experience of relationship conflict mediated the effect of faultline placement on performance. We employed the technique of Baron and Kenny (1986). In this procedure, relationships between the independent variable (faultline placement - solo or subgroup member) and both the mediator (relationship conflict asymmetry) and dependent variable (performance) need to be established, as well as a relationship between the mediator (relationship conflict asymmetry) and the dependent variable (performance). As the final step to show mediation in this procedure, the relationship between the independent variable (faultline placement) and the dependent variable (performance) needs to disappear when the mediator (conflict) is controlled for in the regression equation.

Following this procedure, we found support for mediation. Firstly, as detailed above in our findings for our first hypotheses, we found that solo members had significantly higher, asymmetric perceptions of relationship conflict ($\gamma = .43$, $t = 2.41$, $p < .05$) and lower perceptions of individual performance ($\gamma = -.51$, $t = -2.91$, $p < .01$). Secondly, we found that relationship conflict asymmetry was significantly negatively related to performance ($\gamma = -.27$, $t = -3.19$, $p < .01$). Finally, we found that the effects of being a solo or subgroup member on individual performance decreased to non-significant
when relationship conflict asymmetry was controlled for. The Sobel test for this mediation was significant \((z = 1.98, p < .05)\).

Study 2 Discussion

In Study 2, we show the importance of considering how faultline placement (whether individuals are solos or subgroup members) impacts individual experiences within groups. We find that solo members were more likely to experience a higher amount of relationship conflict and a lower level of individual performance than other group members. The asymmetric perception of relationship conflict fully explained the negative impact of faultline placement — being a solo or subgroup member - on individual performance. Our findings extend existing faultline research (e.g., Lau & Murnighan, 2005; Thatcher et al., 2003) by showing how faultline placement can lead to asymmetries *within* a team. Our findings also extend the recently growing literature on asymmetric perceptions (e.g., Jehn et al., 2006; Jehn & Rispens, 2007) by identifying a situation wherein asymmetric perceptions are likely to exist, and by finding that these asymmetric perceptions do have a negative impact on individual performance.

These findings offer some insight into why in Study 1 we find that teams with solo-splits had less overall conflict and lower performance than teams with coalitional-splits. Namely, as suggested in Study 1, we find in Study 1 that solo members are in a very precarious position in their team - they experience conflicts but are apparently unable to express them, as their fellow team members do not report being aware of the same degree of conflicts as solo members report experiencing. This offers support for why at the group level, teams with solo-splits may not experience as much overall expressed conflict as teams with coalitional-splits.

Study 3: The Role of Demographic Status in Faultline Placement

In Study 3, we expand and refine the theoretical underpinnings of our model. First of all, in this study, we investigate the differences between the experience of relationship problems and the expression of relationship problems. By doing so, we hope to explain the findings in the previous two studies. Specifically, we found in Study 1 that teams with solo-splits had less conflict than teams with coalitional-splits. We built this reasoning on the idea
that solo-members within solo-splits would not challenge the ideas of the larger subgroup, leading to situations of group think (Janis, 1982) in solo-splits. In Study 2, we found that solo members experienced more conflict, and specifically, more relationship conflict, than subgroup members. In Study 3, we reconcile these findings by proposing that solo members experience *more* relationship problems in the team (explaining the findings in Study 2), but are less willing to express this to other members in the team (explaining the findings in Study 1). Indeed, this contrast between the experience and expression of conflict may provide an important basis for the existence of asymmetric conflict perceptions, as shown in Study 2 - when members experience relationship problems, but do not voice these or engage in conflicts, other group members may be unaware of the relationship issues in the group, leading to asymmetric perceptions regarding the degree to which relationship issues, or conflicts, exist within the group.

A second contribution of this study is that we also incorporate the role of demographic status. Demographic characteristics and status are often closely intertwined (e.g., Berger, Rosenholtz, & Zelditch, 1980), which implies that demographic status may have an important moderating impact on the experiences of solo and subgroup members. While demographic status may dramatically alter the role of a solo member (i.e. a female boss with three male subordinates may have a very different experience than a female subordinate in a group with three male bosses), it is difficult to examine in an organizational setting because of the multiple factors contributing to an individual’s status in the organization. We suggest that an individual’s status and placement in a faultline group - whether the individual is a solo member or subgroup member - will have interacting effects on an individual’s willingness to engage in conflict and performance. To understand these relationships, we draw upon status characteristics theory. Status characteristics theory (c.f. Berger Cohen, & Zelditch, 1972) posits that performance expectations in work groups are guided by the status that is assigned to the personal characteristics of group members (e.g., Berger, Rosenholtz, & Zelditch, 1980). Certain visible demographic characteristics which may cause the formation of faultlines, such as gender or race, may also carry implicit weights and expectations. For example, characteristics such as gender and ethnicity may be used by members to provide information about their teammates’ general aptitude or ability
(Berger, Rosenholtz, & Zelditch, 1980), especially in short-term groups (Bunderson, 2003). In teams where demographic faultlines are placed in such a way that high and low status subgroups exist, this informal status structure may determine the power and prestige within the group, whether or not the demographics underlying the faultline are directly related to the team’s task (Berger, Cohen, & Zelditch, 1972). Therefore, in Study 3, we examine the effects of faultline placement as well as demographic status on conflict and performance. In the following sections, we will elaborate on how we predict faultline placement (characterized as the interaction between solo or subgroup members and low or high status members) will affect both the experience of relationship conflict, the likelihood to engage in relationship conflict, and ultimately individual performance.

The Individual Level Effects of Demographic Faultlines and Status

In line with past research which has shown solo placement and status to have interactive effects on solo members at an organizational or societal level (Craig & Feasel, 1998; Ditto & Jemmott, 1989, Sackett et al., 1991; Sekaquaptewa & Thompson, 2003), we propose that faultline placement and status will have an interactive effect on individuals’ willingness to engage in conflict, experience of relationship problems, and their performance. Specifically, we suggest that when a single higher demographic status member is alone in a team of lower demographic status members, the effects may be very different than a single low status member in a team of high status members (e.g., Heikes, 1991; MacCorquodale & Jensen, 1993; Sackett et al., 1991). For example, Tropp and Bianchi (2006) found across three studies that members of low demographic status were less likely to expect diversity to be valued. This may be explained by the fact, that despite valuing equality and diversity initiatives more than other members, minority groups are less likely than majority groups to perceive progress being made in terms of equal opportunities for minority members (Eibach & Ehrlinger, 2006). This frustration at a societal level may lead members of traditionally disadvantaged demographic status to come into groups with lowered expectations for their treatment within the group. However, when these low status group members are surrounding by a supportive subgroup, low status subgroup members may be less sensitive to relationship issues because of the increased social support
from their subgroup members (Lau & Murnighan, 1998).

The visibility of solo members has also been shown to increase expectations of negative stereotypes (e.g., Goffman, 1963; Steele, 1997). For low status solo members, these negative stereotypes may be much more intimidating than for high status solo members. For example, past research has found that solos from a traditionally disadvantaged background (e.g., females, blacks) were more discriminated against by majority group members on task assignments than solos of traditionally higher demographic status (Craig & Feasel, 1998). Therefore, we propose that expectations and experiences such as these may lead low status solo members to expect more relationship issues than high status solo members, who may have more positive expectations about the degree to which diversity will be valued and subgroup members who do not find themselves in such a visible position.

In contrast, when multiple high status members, as is the case for a high status subgroup member, are present, high status subgroup members may be more likely to experience relationship issues because of this increased in-group competition. For example, research has shown that teams composed of primarily high status members are less trusting of each other than teams composed of low status members (Greer, Caruso, & Jehn, 2006). Because of these suspicions between high status members, high status subgroups members, similarly to low status solo members, may be likely to expect relationship issues in the team. Therefore, we propose:

Hypothesis 1. Status will moderate the relationship between faultline placement and likelihood to experience relationship issues (discrimination, goal obstruction). High status solo members are likely to experience less relationship issues than high status subgroup members. Low status solo members are likely to experience more relationship issues than low status subgroup members. Between solo members, low status solo members are more likely to be willing to experience relationship issues than high status solo members. Between subgroup members, high status subgroup members are more likely to experience relationship issues than low status subgroup members.

While we propose that low status solos and high status subgroups may be likely to expect to *experience* relationship problems, we also propose that
these same members may be less likely to express these problems. This is because solo members may often be viewed primarily in terms of their category membership (Niemann & Dovidio, 1998), and for low status solos, this may place them in a low status position in the group, which may inhibit their ability to express relationship issues. Furthermore, compliance pressures on solos (e.g., Asch, 1952, 1956; Bragg & Allen, 1972; Latane & Wolf, 1981; Tanford & Penrod, 1984) may be more powerful on low status solos than high status solos (c.f. Randel, Chay-Hoon, & Earley, 2005). This is because low status members may be more likely to comply to their opinions of their fellow group members (Cohen & Zhou, 1991; Montgomery, 1971) in order to experience increased acceptance (Van Maanen & Schein, 1979) and because they perceive themselves to lack the influence to alter group opinions (Maas & Clark, 1984). Therefore, this tendency of low status solo-members to conform to the majority is likely to mean that low status solo-members are less willing to engage in conflict than other group members.

On the other hand, high status solo members may be more likely to engage in conflict. Research on status and power suggests that this is because status and power are often associated with more approach behavior (Keltner, Gruenfeld, & Anderson, 2003). For example, high status participants are more likely to display visual dominance (a higher ratio of looking while speaking as opposing to looking while listening) (Dovidio et al., 1988), to exert voice, or to ‘speak up’ (Islam & Zyphur, 2005), to take action in given situations (Gallinksy et al., 2003), to interrupt other group members (e.g., Smith-Lovin & Brody, 1989), and to more frequently question the suggestions of others (e.g., Stewart, 1988). A potential reason for this more assertive behavior of high status solo-members is that individuals with high status are less hindered by external consequences (c.f. Keltner et al., 2003) and less likely to perceive themselves as being solo-members (Yoder, 1994). For example, research by Anderson and Berdahl (2002) found high status individuals to be more likely than low status individuals to believe that others like them and are not angry with them. Therefore, we expect that high status faultline solo members will be more likely to engage in conflict than low status faultline solo members.

However, we propose that status will have a different effect on subgroup members. We propose that in groups where the majority subgroup is of high rather than low status, these high status subgroup members will be
more reluctant to engage in conflict than low status subgroup members. Low status subgroup members are surrounded by similar individuals, who can offer them social support (Lau & Murnighan, 1998) and empower them to speak up (Asch, 1952, 1956; Bragg & Allen, 1972). The Asch experiments (1952, 1956) showed that the presence of just a single other subgroup member greatly enabled participants to stand up for themselves and not comply with the majority rule. We suggest, however, that these benefits of subgroup support will only apply to low-status subgroup members.

Members of a high status subgroup may now find themselves in a position where they do not feel willing to engage in conflict. In situations where multiple equally high status team members are present, research has shown that these high power individuals need to have a clear hierarchy among themselves in order to perform well (Smith, Houghton, Hood, & Ryman, 2006) and to voice their opinions in the team. Indeed, a need for hierarchy is acknowledged in status characteristics theory (c.f. Berger Cohen, & Zelditch, 1972) which suggests that the diffuse characteristics, or external sources of subgroup status, such as demographic characteristics, influence specific status within the team, but that over time, status differentiation will occur via other factors, such as individual behavior profiles (e.g., Berger, Ridgeway, & Zelditch, 2002). In situations where status differentiation has not yet occurred, high status subgroup members may become more inhibited in their behavior, as without a clear within-team hierarchy, members may not know the degree of their influence within the team (Bales, 1950; Berger, Rosenholtz, & Zelditch, 1980). Members may not want to inadvertently overstep their boundaries by exerting influence greater than what they actually hold because of their desire to belong to the team (Baumeister & Leary, 1995). For example, imagine a group of scientific experts from different fields meeting together for the first time as part of a project-team, which also includes a single research assistant. The high status members – the multiple scientific experts in the team - know that they all have been identified as being the leaders in their fields, but they do not yet know what the internal hierarchy within their team will be. Their behavior then may be inhibited as members do not want to inadvertently offend their new teammates by overstepping their status role in the team. Recent research by Anderson et al. (2006) shows support for this, as they found that members who perceived themselves to have more status than they
actually did were less socially accepted, and that perhaps because of this, members tended to err more on the side of humility than self-exaggeration when estimating their own status in the team. Relatedly, Lammers, Galinsky, Gordijn, and Otten (2008) found that when the legitimacy of powerful group members was brought into question, such as in the situation in our study where multiple members with high status characteristics are brought together, high power members actually become more inhibited in their behavior. These findings suggest that when multiple high status individuals are present, high status members may actually become more inhibited in their behavior, and thus less likely to engage in conflict. Therefore, we propose:

Hypothesis 2. Status will moderate the relationship between faultline placement and willingness to engage in relationship conflict. High status solo members are more likely to be willing to engage in relationship conflict than high status subgroup members. Low status solo members are less likely to be willing to engage in relationship conflict than low status subgroup members. Between solo members, high status solo members are more likely to be willing to engage in relationship conflict than low status solo members. Between subgroup members, low status subgroup members are more likely to be willing to engage in relationship conflict than high status subgroups members.

Past research has shown that solo placement and status do have interacting effects on performance. For example, at an organizational or societal level, being a numerical minority has been found to be associated with lower performance scores for female minority groups and solos, but not male minority groups or solos (Sackett et al., 1991; Sekaquaptewa & Thompson, 2003). Sekaquaptewa and Thompson (2002) showed that these findings were not gender specific, but rather applied to traditionally low status demographic characteristics, by finding that traditional racial minorities experienced similar performance hindrances to females. In our study, we propose that these performance differences can be explained by discrepancies in experiences of relationship conflict compared to willingness to enter into relationship conflict. In line with work by Bhappu and Milton (2005) which proposed that when experienced conflict is high and expressed conflict is low, teams and individuals are likely to have low levels of performance, we predict that
members likely to experience relationship conflict but unwilling to discuss it (i.e. low status solos and high status subgroup members) will have lower levels of performance. Members in such situations may experience cognitive overload as they wrestle with their situations, as either visible low status solos or as a high status member in a group with multiple other high status members. Additionally, members in such situations are likely to be unable to resolve their perceived relationship problems in the group as they are unwilling to openly discuss them with group members. Without resolution, these relationship problems may distract the member from task at hand as well as lead to member withdrawal from group activities (Jehn & Bendersky, 2003). In such situations, these members (low status solo members and high status subgroup members) are likely to perform worse than members who experience less relationships problems and who are more willing to discuss such issues when they arise with other group members. Therefore, we propose that:

Hypothesis 3. Status will moderate the relationship between faultline placement and performance. High status solo members will perform better than high status subgroup members. Low status solo members will perform worse than low status subgroup members. Between solo members, high status solo members will perform better than low status solo members. Between subgroup members, low status subgroup members will perform better than high status subgroups members.

Study 3 Method

Sample

We recruited 77 students (44 female students and 33 male students) (mean age=21.18, SD=3.56) from Leiden University to participate in our experiment. Participants were randomly placed in a 2 (solo or subgroup) X 2 (low or high demographic status) between subjects design.

Procedure

Upon entering the lab, students were placed at separate computers. Students were told that they would be working on a task together with five other students located in other labs (although these people did not exist). Participants were then asked to enter their own demographic information and were then assigned to conditions such that they were either similar to or
different from other team members on the basis of these characteristics. Half of the participants being placed in the situation where they were dissimilar from all other team members and the other half of the participants were placed in a situation where they were part of a team containing a subgroup similar to themselves. Demographic status was manipulated by informing female students that all male students were of a higher educational level, and informing male students that all female students were of a lower educational level. This combination of demographic status characteristics was done to create a status-based faultline (faultlines are based on the alignment of multiple demographic characteristics) based on multiple demographic characteristics with traditional status connotations. Throughout the rest of this experiment, the information about the team demographics was also continually displayed on the top of the screen so participants could see at all times the demographic characteristics of their teammates.

Before starting the task, participants were asked to rate their expectancies about interactions in the team based on their placement in the demographic composition of their group. Participants answered, for example, whether or not they would be likely to engage in task or relationship conflicts in their teams. Following the completion of these questions, the participants then participated in the NASA task (Cammalleri, Hendrick, Pittman, Blout, & Prather, 1973). In this task, participants are asked to order 14 objects (e.g., a matchstick or an oxygen tank) from the most to the least useful to survive on a mission on the moon. Participants in our experiment were told that they would work individually on this task, but their performance would be assessed by the sum of individual performance within their team, with a reward of €50 for the highest performing team. A benefit of this task is that it allows an objective, external performance measure of participant decision-making performance.

Measures

Willingness to Engage in Relationship Conflict

The scale for the willingness to engage relationship conflict was adapted from the scale of Jehn (1995). The likelihood to engage in relationship conflict was assessed with 6 items (e.g. “When a personality differences occurs in the team, I will discuss it with the team.”) and exhibited sufficient reliability.
(α=.90).

Likelihood to Experience Relationship Problems

To assess the degree to which participants expected relationship problems in the team, we measured discrimination (2 items, e.g., “Discrimination is likely to exist in this team, α=.86) and goal obstruction (adapted from Chen & Tjosvold (2002)) (7 items, e.g. “Team members will structure things in a way to favor their own goals, rather than goals of other group members”, α=.82). Because these items loaded onto two separate factors with all loadings of .68 or above, we looked at them separately in our ensuing analyses.

Performance

Performance was assessed by comparing the ranking of the participants to that of the correct ranking of items for use on a moon walk as identified by NASA (Cammalleri et al., 1973).

Study 3 Results

Manipulation Checks

All manipulation checks were successful. To assess whether solo members did indeed feel like solos, we asked participants a series of three questions (e.g., “How alone do you feel in this team?”). A 2 X 2 ANOVA on the manipulation check of faultline placement yielded only a main effect of faultline placement (F(1,73)=80.36, p<.001). Participants in our demographic solo condition reporting higher feelings of being a solo (M = 5.25, SD = 1.38) than members in our demographic subgroup condition (M = 2.87, SD = .78). For our status manipulation, participants were able to recall whether or not they had high status within their team, based on a series of three questions which asked their status in the team (e.g., “Others had more status than I did”). A 2 X 2 ANOVA on the manipulation check of status yielded only a main effect of status (F(1,73)=8.64, p<.01). Participants in the high status condition reported higher self-perceptions of status (M = 4.85, SD = .97) than participants in the low status condition (M = 4.18, SD = .97).
Hypothesis Testing

Multivariate analysis on likelihood to engage in relationship conflict, likelihood to experience relationship problems (as assessed by expected discrimination and expected goal obstruction), and task performance revealed that the interaction between status and faultline placement ($F(1,73)=3.68$, $p<.05$) significantly affected these constructs.

Univariate analyses revealed that the interaction of faultline placement and status had a significant effect on likelihood to engage in relationship conflict ($F(1,73)=10.06$, $p<.01$). We also conducted specific two-tailed t-tests to interpret this interaction. High status solos were marginally significantly more willing to engage in relationship conflict than low status solo (high status solos $M=3.51$, $SD=.99$, low status solos $M=2.99$, $SD=1.14$, $t(38)=-1.53$, $p<.10$) (see Fig. 2). In contrast, low status subgroup members were more willing to engage in relationship conflict than high status subgroup members (low status subgroup members $M=3.81$, $SD=1.39$, high status subgroup members $M=2.71$, $SD=.88$, $t(35)=2.92$, $p<.01$). Furthermore, low status solo members were less willing to engage in relationship conflict than low status subgroup members (low status solo members $M=2.99$, $SD=.99$, low status subgroup members $M=3.80$, $SD=1.40$, $t(31)=-1.96$, $p<.05$). In contrast, high status solo members were more willing to engage in relationship conflict than high status subgroup members (high status solo members $M=3.51$, $SD=1.14$, high status subgroup members $M=2.71$, $SD=.88$, $t(42)=2.56$, $p<.01$).

In terms of expected relationship issues, univariate analyses showed a main effect of faultline placement on expected discrimination ($F(1,73)=7.61$, $p<.01$). Specific two-tailed t-tests were also conducted to interpret this interaction. Solo members were more likely to expect discrimination than subgroup members (solos $M=2.70$, $SD=1.41$, subgroup members $M=1.89$, $SD=.90$). An interaction effect between faultline placement and demographic status was also significant ($F(1,73)=5.07$, $p<.05$). The interaction plot of these findings (see Fig. 3) shows that, in contrast to the likelihood to engage in relationship conflict, that low status solo members were more likely to expect discrimination to occur in the team than high status solo members (low status solos $M=3.13$, $SD=1.51$, high status solos $M=2.12$, $SD=1.04$, $t(38)=-2.38$, $p<.05$). For subgroup members, status did not significantly alter their expectations of discrimination (low status subgroup members $M=1.88$,}
SD= .96, high status subgroup members M=1.91, SD= .84 \(t(35) = .08, n.s. \). For low status members, differences in expected discrimination did not differ significantly for solo members and subgroup members (low status solo members M=2.12, SD=1.04, low status subgroup members M=1.91, SD= .84 \(t(35) = .64, n.s. \)). However, for high status members, high status solo members expected more discrimination in the group than high status subgroup members (high status solo members M=3.13, SD=1.51, high status subgroup members M=1.88, SD= .96 \(t(42) = 3.24, p < .01 \)).

Univariate analyses also showed a marginally significant interaction of faultline placement and demographic status on expected goal obstruction \((F(1,73) = 2.63, p < .10) \). As depicted in Figure 4, low status solo members and high status subgroup members appeared the most likely to expect goal obstruction to occur within the team. However, specific two-tail t-tests did not show these specific differences to reach statistical significance (low status solo members M=4.96, SD= .90, high status solo members M=4.37, SD= .90 \(t(38) = -1.50, n.s. \); low status subgroup members M=3.70, SD= .90, high status subgroup members M=3.30, SD=1.01, \(t(35) = .91, n.s. \); low status solo members M=4.38, SD= .90, low status subgroup members M=4.70, SD= .90 \(t(35) = - .85, n.s. \); high status solo members M=4.96, SD= .90, high status subgroup members M=4.29, SD=1.01, \(t(42) = 1.37, n.s. \)).

Univariate analyses also revealed that the interaction between faultline placement and demographic status had a significant impact on performance \((F(1,73) = 4.29, p < .05) \). As depicted in Figure 5, members of low demographic status appeared to perform worse when alone in a team of high status members than when other low demographic status members were present. However, specific two-tailed t-tests did not reveal a significant difference (low status solo members M=2.47, SD=1.37, low status subgroup members M=3.13, SD=1.70, \(t(35) = -1.22, n.s. \)). Members of high demographic status appeared to perform worse when other high demographic status members were present than when they were along with low status members (high status solo members M=3.35, SD=1.70, high status subgroup members M=2.38, SD=1.72, \(t(42) = 1.88, p < .10 \)). Finally, high status solos appeared to outperform low status solos, while low status subgroup members appeared to outperform high status subgroup members (low status solo members M=2.47, SD=1.37, high status solo members M=3.34, SD=1.69,
$t(38) = -1.75, p < .10$; low status subgroup members $M=3.13, SD=1.71$, high status subgroup members $M=2.38, SD=1.72, t(35) = 1.31, n.s.$.

Figure 2. The effects of faultline placement and status on individual willingness to engage in relationship conflict

![Bar chart showing the effects of faultline placement and status on individual willingness to engage in relationship conflict.](chart1)

Figure 3. The effects of faultline placement and status on individual expected discrimination

![Bar chart showing the effects of faultline placement and status on individual expected discrimination.](chart2)
Following the procedure of Baron and Kenny (1986), we tested for mediation of the relationship between faultline placement and performance by willingness to engage in relationship conflict and the experience of relationship problems. We found that willingness to engage in relationship
conflict was positively related to individual performance ($\beta = .25, p < .05$). We also found that the relationship between faultline placement (the interaction term of solo versus subgroup and low versus high status) and performance ($\beta = -.24, p < .05$) became non-significant when willingness to engage in relationship conflict was entered into the equation ($\beta = -.17, n.s.$). The Sobel test for this mediation was marginally significant ($z = -1.83, p < .10$). We did not find a significant effect of either expected discrimination on performance ($\beta = .13, n.s.$) or of goal obstruction on performance ($\beta = .01, n.s.$), preventing us from finding the experience of relationship problems to mediate the relationship between faultline placement and performance.

Study 3 Discussion

In this third study, we found that high status solo members performed better than low status solo members whereas low status subgroup members performed better than high status subgroup members. These effects were partially explained by the expectations participants had about relationship conflict within the team. Specifically, both high status solo members and low status subgroup members were more willing to engage in relationship conflict than low status solo members or high status subgroup members. Additionally, despite being unwilling to engage in relationship conflict, low status solo members were more likely to expect relationship problems such as discrimination to exist within the group. The findings primarily support our hypotheses. We had suggested that low status solo members are in precarious positions in their groups because of a lack of social support and social standing, whereas we had suggested that high status subgroup members would experience tension and competition from the presence of other high status subgroup members that would also put the high status members in precarious positions within their groups. Together, these findings show that being a solo member is only bad for those with low status. However, having high status is not always an improvement for group members – when multiple high status members are present in the group, high status subgroup members actually appeared to under perform high status solo members and low status subgroup members.

A strength of this study is showing the linkages between faultline perceptions and realities in a controlled setting, and how we
operationalized this. Faultlines are based on the alignment of multiple demographic characteristics. The theory underlying faultlines suggests that the more numerous the characteristics that divide a group are, the more strong the effects (Lau & Murnighan, 1998). Therefore, the focus in this study was not on the specific characteristics that divide, but the consequences of having a compound of characteristics align in such a way as to create a clearly visible dividing line in a group. A critic could argue that faultlines, and their placement, could be manipulated orthogonally, through, for example, just telling someone they are a solo member in their group. However, we feel that our method of examining faultlines offers several benefits to this method. First of all, our operationalizations of faultlines closely align with faultlines as they actually occur in the organizational environment, improving the generalizability of our findings to organizational settings. Additionally, we do find, based on our manipulation checks, that members do perceive themselves as excluded and as having different levels of status, just on the basis of telling them the demographic characteristics of their other group members. One could argue then that our operationalization of faultlines thus offers a subtle and generalizable operationalization of the faultline construct, and contributes to existing faultline research (e.g., Lau & Murnighan, 2005) by showing that faultline placement is likely to be perceived.

General Discussion

In all three of the studies in this chapter, we found faultline placement to have a significant impact on conflict and performance for both individuals and teams. In Study 1, we showed that teams with faultline solo splits had lower levels of intragroup conflict and performance than teams with faultline coalitional splits. In our next two studies, we worked to explain these findings by focusing on how faultline solo-splits may lead members within the same team to have very different experiences. In Study 2 and Study 3, we found faultlines to have a significant impact on within-group differences in individual members’ expectation and experience of conflict as well as on their perceived and actual performance. We found in Study 2 that solo members perceived themselves to perform worse than subgroup members, and that this
was explained by the fact that they experienced higher levels of relationship conflict than other group members. In Study 3, we showed why solos perceived more relationship conflict than subgroup members - they experienced higher levels of relationship problems (discrimination and goal obstruction), but were unwilling to speak out about these problems to their other group members, so other group members were often unaware of the solo member’s problems. Additionally, we incorporated the role of demographic status. We found that both low status solo members and high status subgroup members were less willing to engage in conflict compared to other team members, but experienced higher levels of relationship problems in the team (i.e. discrimination, goal obstruction). Additionally, we found high status solo members to outperform low status solo members, but we also found that low status subgroup members outperformed high status subgroup members. This shows the precarious position of solo members, particularly low status solo members – they are the most likely to experience relationship problems in the team, but are the most unwilling to voice these problems – i.e. engage in conflict. At the team level, this suggests that teams in which a faultline divides a low status member from a high status subgroup may have lower levels of performance than teams where the faultline separates a high status solo member from a low status subgroup.

Our findings offer several contributions. First of all, we contribute to existing diversity and faultline research (e.g., Gibson & Vermeulen, 2003; Lau & Murnighan, 2005) by demonstrating the impact of faultline placement on differences both between- and within- teams. Taken together, these findings emphasize the impact that demographic faultlines can have on teams, and suggest that as researchers, we should also consider the impact that the placement of a faultline - the way in which a faultline divides a subgroup, dividing a subgroup from a subgroup or separating a solo member from a majority subgroup- may have on teams and the individuals within them. Additionally, our study shows that the mere presence of diversity alone is not enough to drive performance in a group. Especially in situations of solo-splits, group members need to not only listen to the work-related opinions from diverse members, but also actively debate and challenge their opinions. This extends past research on minority influence (e.g., Phillips & Loyd, 2006; Phillips, Mannix, Neale, & Gruenfeld, 2004) by showing the importance of
Our findings also extend literature on tokenism in organizations. The majority of past literature on ‘tokens’ or ‘solos’ in organizations has only examined the individual-level experiences of minority members within the broader organization and has not examined the resulting impact of tokenism on group-level processes and outcomes (e.g., Barreto, Ellemers, & Palacios, 2004; Kanter, 1977; Niemann, & Dovidio, 1998; Sackett, DuBois, & Noe, 1991). Our results show that tokenism in the team setting may also have a large impact on team- and individual-level processes and performance. Additionally, our findings also extend past related work on relational demography (e.g., Tsui, Egan & O’Reilly, 1992; Tsui & O’Reilly, 1989), which has examined how being dissimilar from others in a team may impact individual conflict and performance. Specifically, past work on relational demography has not looked at the effects of being a dissimilar solo against a unified majority subgroup - rather it has looked at the degree to which a member is distinctive in a potentially homogenous or heterogeneous team. Our findings thus expand on the different types of situations in which an individual can be dissimilar. We show that being an individual dissimilar from not just the rest of the team, but dissimilar from a subgroup of people who are all just like each other may by an especially negative experience for individuals.

This chapter also offers insights which are potentially relevant for research on multi-party negotiation and coalition formation (e.g., De Dreu & Carnevale, 2003; Komorita & Parks, 1995; Murnighan, 1978), and in particular, the literature on social inclusion and exclusion in the context of negotiations (e.g., Van Beest et al., 2003; Van Beest, & Williams, 2006; Williams, 1997). This literature has primarily examined the consequences of social exclusion, such as negative affect (van Beest & Williams, 2006; Williams, 1997; Williams, Cheung, & Choi, 2000; Wong, Eccles, & Sameroff, 2003). In this chapter, we identify a potentially potent antecedent of social exclusion in groups. We show that exclusion can occur on the basis of demographic characteristics and can have powerful effects on individual experiences and outcomes. Our findings thus suggest that exclusion based on demographic faultlines could also potentially guide behavior within the negotiation context. For example, our findings suggest that low status solo
members may be more avoidant in multi-party settings, which could potentially influence the outcomes of a multi-party negotiation. These findings highlight the importance for both researchers and managers of paying special attention to solo members in teams.

While our focus was on the precarious position of solo members in workgroups, our findings also bring forward an interesting finding in terms of status and group dynamics. We find in our second study that members of high status subgroups experience as many behavioral and performance deficits as low status solo members. While past research has often looked at the impact of power or status on individual perceptions and decision-making (e.g., Galinsky, Magee, Inesi, & Gruenfeld, 2006; Keltner, Gruenfeld, & Anderson, 2003), little research has examined the consequences of having several members of high status working together. We find that having ‘too many cooks in the kitchen’ may also be a large problem for organizational workgroups and is a situation that should be actively managed.

Lastly, our findings are also relevant to the intragroup conflict literature (e.g., De Dreu & Weingart, 2003; Jehn & Bendersky, 2003). Our findings that task and relationship conflict in Study 1 and individual willingness to engage in conflict in Study 2 are positively related to performance suggest that not all forms of conflict are necessarily detrimental, as suggested by the meta-analysis of De Dreu and Weingart (2003) of intragroup conflict. To gain the value from diversity, our findings show that it is critical for teams and individual members to engage in conflict in faultline situations. However, future research would benefit from further investigation into the mechanisms by which intragroup conflict and individual willingness to engage in conflict affect team and individual performance. Through such investigation we may better understand exactly when and why certain forms of conflict are positively related to performance in individuals and teams.

Additionally, our findings also offer insight into existing intragroup conflict research by identifying a situation in which asymmetric perceptions are likely to occur, thus extending this new line of asymmetry research (e.g., Jehn et al., 2006). We show that members likely to have asymmetric conflict perceptions – solo members – are also likely to experience higher levels of relationship issues than other group members, but are less willing than other group members to
discuss these issues in relationship conflicts. This discrepancy between experienced and expressed conflict may be a central factor in leading to asymmetric conflict perceptions within a group. As asymmetric perceptions may decrease important individual outcomes (Jehn et al., 2006), better understanding the mechanisms that lead to asymmetric perceptions may provide both managers and researchers with tools to better understand how groups can most effectively manage their conflicts.

Managerial Implications

The results of these studies suggest that managers need to pay special attention to how group composition affects internal team dynamics. Teams containing a low status solo member or a high status subgroup may be especially susceptible to performance difficulties. By being aware of these dynamics and working with team members to overcome them, managers can ensure that faultline placement does not impair the performance of their team members. For example, when a team contains a low status solo member, managers can encourage other team members to support this member and encourage the member to engage in debate and conflict, so that the team can still benefit from the diversity within it. Additionally, when a team contains multiple high status members, managers should be aware of the sensitivity of this situation and work to enable higher levels of trust between the high status members. One way to accomplish this would be to help members identify a new status hierarchy within the team based on demonstrated skills and competencies on team tasks, such that there is no longer confusion or perceived illegitimacies of power within the team resulting from multiple members possessing high status based on demographic characteristics.

Conclusion

Across three studies, using both laboratory and field samples, we have shown that both between and within teams, faultline placement can cause differences in both team and individual performance. We have highlighted the role of the individual within the team and suggest that small group research can gain from a more thorough understanding of how differences between individuals in terms of their placement within the team (solo or subgroup
member) and their status can affect their behavior within the team and ultimately the performance of not only themselves, but their team as a whole. By better appreciating the unique role of the individual within the team, managers and researchers alike can learn how to better utilize the unique individuals within their teams to achieve higher performance.
Chapter 4 Appendix

Study 4 Willingness to Engage in Conflict Items

1. I am willing to enter into task-related conflicts in this team.
2. When I am in disagreement with other members about the task, I will tell them.
3. In this team, I will defend my views about the task.
4. In this team, I will stand up for my own viewpoints about the task.
5. When a personality difference occurs in the team, I will discuss it within the team.
6. If I don’t like someone in this team, I will tell my team.
7. I won’t mind taking part in person-related conflicts in this team.
8. In this team, I will not find it hard to tell someone if they are being unkind.