Model-Driven Segmentation of X-Ray Left Ventricular Angiograms
Colophon

About the cover
The sequence of images on the cover shows half a cardiac cycle of the left ventricle in an X-ray left ventricular angiographic acquisition. The utmost left image represents the left ventricle in the end diastolic phase. When following the string of images in a counter-clockwise fashion, the contraction of the left ventricle over time is depicted, ending at the end systolic phase. In both the end diastolic and the end systolic image frame a yellow contour line is drawn. These contours are the results of the automated methodology, as presented in this thesis. After visual inspection, the analyzing expert cardiologist ratified both contours without further manual editing. The combination of all images together represents a typical shape of the projected left ventricle as seen in a single-plane 30° right anterior oblique view acquisition.

About the quotes
The Japanese quotes (and their English translations) that are used on the title pages of each chapter aim to deliver in short the scope of the chapter. What these quotes have in common is that they all use the Japanese character 心 (‘kokoro’), signifying (among other possible meanings) ‘heart’.

Model-driven segmentation of X-ray left ventricular angiograms
Oost, Cornelis Roel

Printed by Ponsen & Looijen b.v., The Netherlands

© 2008 C.R. Oost, Leiden, The Netherlands
All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the copyright owner.
Model-Driven Segmentation of X-Ray Left Ventricular Angiograms

Proefschrift

ter verkrijging van
de graad van Doctor aan de Universiteit Leiden,
op gezag van Rector Magnificus prof. mr. P.F. van der Heijden,
volgens besluit van het College voor Promoties
te verdedigen op dinsdag 30 september 2008
klokke 15.00 uur

door

Cornelis Roel Oost
geboren te Rutten
in 1976
The research described in chapters 2, 3 and 5 was financially supported by the Dutch Technology Foundation STW (grant LGN 4508).

Financial support for the publication of this thesis was kindly provided by:

- Stichting Beeldverwerking Leiden
- Foundation Imago Oegstgeest
- Medis medical imaging systems bv

Financial support by the Netherlands Heart Foundation for the publication of this thesis is gratefully acknowledged.
Contents

1 **Introduction**
 1.1 Background
 1.2 X-Ray LV Angiography
 1.2.1 X-Ray LV Angiography Acquisition
 1.2.2 X-Ray LV Angiography Image Processing Challenges
 1.3 Prior Literature on Automated X-Ray LV Analysis
 1.4 Statistical Models for Image Segmentation
 1.4.1 Limitations of Active Appearance Models
 1.5 Scope of this Thesis
 1.6 Thesis Outline

2 **Left Ventricle Contour Detection in X-Ray Angiograms using Multi-View Active Appearance Models**
 2.1 Introduction
 2.2 Active Appearance Models
 2.2.1 Active Appearance Model Training
 2.2.2 Active Appearance Model Matching
 2.2.3 Medical Applications of Active Appearance Models
 2.3 New AAM Extensions
 2.3.1 Multi-View Active Appearance Models
 2.3.2 Boundary Active Appearance Models
 2.4 Experiments and Results
 2.4.1 Experimental Setup
 2.4.2 Evaluation Method
 2.4.3 Results
 2.5 Discussion

3 **Multi-View Active Appearance Models: Application to X-Ray LV Angiography and Cardiac MRI**
 3.1 Introduction
 3.2 Background
 3.2.1 AAM Training
 3.2.2 AAM Matching
 3.2.3 Medical Applications of AAMs
 3.3 Multi-View Active Appearance Models
 3.4 Experimental Validation
 3.4.1 X-Ray LV Angiography
 3.4.2 Cardiac MRI
 3.4.3 Evaluation Method
 3.4.4 Results
 3.5 Discussion and Conclusions

4 The Effect of the Composition of the Training Set 55
 4.1 Introduction 56
 4.2 Materials and Methods 58
 4.2.1 Study Population 58
 4.2.2 Slice Labeling and Manual Contour Tracking 58
 4.2.3 Assessment of the Segmentation Quality 58
 4.2.4 Inter-Observer Study 59
 4.2.5 Optimal Number of Training Images 59
 4.2.6 Impact of the Normal versus Pathologic Ratio 60
 4.2.7 Impact of the Distribution of Acquisition Systems 60
 4.3 Results 60
 4.3.1 Inter-Observer Study 60
 4.3.2 Optimal Number of Training Images 61
 4.3.3 Impact of the Normal versus Pathologic Ratio 62
 4.3.4 Impact of the Distribution of Acquisition Systems 63
 4.4 Discussion 64
 4.4.1 Optimal Number of Training Images 65
 4.4.2 Impact of the Normal versus Pathologic Ratio 65
 4.4.3 Impact of the Distribution of Acquisition Systems 66
 4.5 Conclusions 67

5 Automated Contour Detection in X-Ray Left Ventricular Angiograms Using Multi-View Active Appearance Models and Dynamic Programming 71
 5.1 Introduction 72
 5.1.1 Contribution of This Work 73
 5.2 Background 74
 5.2.1 AAM Training 75
 5.2.2 Using AAMs for Segmentation 76
 5.3 Segmentation Method 77
 5.3.1 Multi-View AAM 77
 5.3.2 Controlled Gradient Descent 79
 5.3.3 Motion-Based Dynamic Programming 80
 5.4 Clinical Evaluation 82
 5.4.1 Data Material 82
 5.4.2 AAM Training 82
 5.4.3 Semi-Automatic Segmentation 83
 5.4.4 Fully Automatic Segmentation 83
 5.4.5 Comparison with Conventional Methods 84
 5.4.6 Dynamic Programming Parameters 84
 5.4.7 Evaluation Indices 85
 5.5 Results 86
 5.5.1 Semi-Automatic Segmentation 86
 5.5.2 Fully Automatic Segmentation 89
 5.5.3 Comparison with Conventional Methods 90