Appendix B

Complete-Basis Functions

Here is a brief summary of the fundamental mathematical concepts behind the Complete-Basis-Functions Parameterization, as presented in Section 9.2.2. This part is mainly based on Abramowitz [173] and Kaplan [174]. Let \(f(x) \) be given in the interval \(a \leq x \leq b \), and let

\[
\xi_1(x), \xi_2(x), \ldots, \xi_k(x), \ldots
\]
(B.1)

be functions which are all piecewise continuous in this interval.

The set \(\{ \xi_k(x) \}_{k=1}^{\infty} \) is called complete if it can span any piecewise continuous function \(f(x) \), e.g.,

\[
f(x) = \sum_{k=1}^{\infty} c_k \xi_k(x),
\]
(B.2)

where the coefficients \(c_k \) are given by:

\[
c_k = \frac{1}{B_k} \int_a^b f(x) \xi_k(x) \, dx, \quad B_k = \int_a^b [\xi_k(x)]^2 \, dx
\]
(B.3)

The convergence is guaranteed by the so-called completeness theorem. Explicitly, the series

\[
R_m = \int_a^b \left(f(x) - \sum_{k=1}^{m} c_k \xi_k(x) \right) \, dx = \int_a^b (f(x) - S_m(x))^2 \, dx
\]
(B.4)

converges to zero for sufficiently large \(m \):

\[
\lim_{m \to \infty} R_m = 0,
\]
(B.5)

where we denoted the sequence of partial sums as \(S_m(x) \):

\[
S_m(x) = \sum_{k=1}^{m} c_k \xi_k(x)
\]
(B.6)

221
By definition, the convergence of the series of functions is equivalent to the convergence of \(S_m(x) \) to \(f(x) \):

\[
\lim_{m \to \infty} S_m(x) = f(x) \tag{B.7}
\]

The Fourier (Trigonometric) Series

A **trigonometric series** is an expansion of a periodic function in terms of a sum of *sines* and *cosines*, making use of the orthogonality property of the harmonic functions. Without loss of generality, let us consider from now on the interval \([0, L]\). Let \(f(x) \) be a single-valued function defined on that interval, then its **trigonometric series** or **trigonometric expansion** is given by:

\[
\tilde{f}(x) = \frac{1}{2} a_0 + \sum_{k=1}^{\infty} a_k \cos \left(\frac{2\pi k}{L} \cdot x \right) + \sum_{k=1}^{\infty} b_k \sin \left(\frac{2\pi k}{L} \cdot x \right) \tag{B.8}
\]

If the coefficients \(a_k \) and \(b_k \) satisfy certain conditions, then the series is called a **Fourier series**.

If \(f(x) \) is periodic with period \(L \), and has continuous first and second derivatives for all \(x \) in the interval, it is guaranteed that the trigonometric series of \(f(x) \) will converge uniformly to \(f(x) \) for all \(x \); This is referred to as satisfying the **Dirichlet conditions**. We shall refer in this study to the **trigonometric** series as the **Fourier** series.

Other Sets of Functions

If one is indeed interested in periodic functions, there is no natural alternative but using the trigonometric series. However, if one is concerned with other representations of a general function over a given interval, a great variety of other sets of functions is available, e.g.:

- **Legendre polynomials**, \(P_k(x) \):

 \[
P_k(x) = \frac{(2k-1)(2k-3)\cdots 1}{k!} \left\{ x^k - \frac{k(k-1)}{2(k-1)}x^{k-2} + \frac{k(k-1)(k-2)(k-3)}{2\cdot 4(2k-1)(2k-3)}x^{k-4} - \cdots \right\} \tag{B.9}
\]

 which can also be defined via Rodrigues’ formula:

 \[
P_0(x) = 1 \quad P_k(x) = \frac{1}{2^k k!} \frac{d^k}{dx^k} (x^2 - 1)^k, \quad k = 1, 2, \ldots \tag{B.10}
\]

If \(f(x) \) satisfies the **Dirichlet conditions** mentioned earlier, then there will exist a Legendre series expansion for it in the interval \(-1 < x < 1\). For illustration, the first 10 **Legendre polynomials** are plotted in Figure B.1.
• **Bessel Function of the First Kind and of Order** l, $J_l(x)$:

$$J_l(x) = \sum_{k=0}^{\infty} \frac{(-1)^k x^{l+2k}}{2^{l+2k} \cdot k! \cdot \Gamma(l + k + 1)}$$ \hfill (B.11)

with $\Gamma(\alpha)$ as defined in Eq. 1.36. Given a fixed $l \geq 0$, the functions \(\{\sqrt{x}J_l(\lambda_k x)\}_{k=1}^{\infty} \) form an orthogonal complete system over the interval $0 \leq x \leq 1$.

• **Hermite polynomials**, $H_k(x)$:

$$H_k(x) = (-1)^k \exp \left\{ x^2 \right\} \frac{d^k}{dx^k} \left(\exp \left\{ -x^2 \right\} \right), \; k = 0, 1, \ldots$$ \hfill (B.12)

The Hermite polynomials form a complete set of functions over the infinite interval $-\infty < x < \infty$, with respect to the weight function $\exp \left(-\frac{1}{2} x^2 \right)$.

• **Chebyshev polynomials of the First Kind**, $T_k(x)$:

$$T_k(x) = \frac{k}{2} \sum_{r=0}^{[k/2]} \frac{(-1)^r}{k-r} \binom{k-r}{r} (2x)^{k-2r}, \; k = 0, 1, \ldots$$ \hfill (B.13)

The Chebyshev polynomials of the First Kind form a complete set of functions over the interval $[-1, 1]$ with respect to the weight function $\frac{1}{\sqrt{1-x^2}}$.

Figure B.1: The First 10 *Legendre* Polynomials.
Higher Dimensions

An expansion by means of a complete set of functions can be generalized for higher dimensions. For illustration, let us consider the two-dimensional case of the trigonometric series. The functions $\cos(\frac{2\pi k}{L} \cdot x) \cdot \cos(\frac{2\pi l}{L} \cdot y)$, $\sin(\frac{2\pi k}{L} \cdot x) \cdot \cos(\frac{2\pi l}{L} \cdot y)$, $\cos(\frac{2\pi k}{L} \cdot x) \cdot \sin(\frac{2\pi l}{L} \cdot y)$, and $\sin(\frac{2\pi k}{L} \cdot x) \cdot \sin(\frac{2\pi l}{L} \cdot y)$ form an orthonormal complete system of functions in the box $[(0, 0), (0, L), (L, 0), (L, L)]$. Given a function in that domain, $f(x, y)$, its expansion can then be written in the form:

$$f(x, y) = \sum_{k=0}^{\infty} \sum_{l=0}^{\infty} \lambda_{kl} \left\{ a_{kl} \cos(\frac{2\pi k}{L} x) \cos(\frac{2\pi l}{L} y) + b_{kl} \sin(\frac{2\pi k}{L} x) \cos(\frac{2\pi l}{L} y) + c_{kl} \cos(\frac{2\pi k}{L} x) \sin(\frac{2\pi l}{L} y) + d_{kl} \sin(\frac{2\pi k}{L} x) \sin(\frac{2\pi l}{L} y) \right\}$$

(B.14)

Corollary

An infinite series of complete basis functions converges to any “reasonably well behaving” function. Hence, it is straightforward to approximate a given function with a finite series of those functions, i.e., by cutting its tail from a certain point. In principle, the sum $S_m(x)$ (Eq. B.6) can always be found to a desired degree of accuracy by adding up enough terms of the series. For practical applications, the corollary is that every function can be approximated using a series of complete basis functions, to whatever desired or practical accuracy. Moreover, this corollary can be easily generalized to any desired dimension.