The lack of long-lived effector CD8+ T cells in cancer patients after minimal CTL peptide vaccination can be explained by the fact that such vaccine induces CD8+ T cell tolerance (this thesis, chapter 2).

Increased duration of Ag presentation enhances the magnitude of the CD8+ T cell response, however too long Ag presentation can be detrimental for the CD8+ T cell (this thesis, chapter 2&3).

Understanding the pharmacokinetics of peptide-based vaccines is essential for further optimization of these vaccines (this thesis, chapter 3).

The level of tetramer+ CD8+ T cells after in vitro stimulation is not indicative of the vaccine’s therapeutic anti-tumor potential (this thesis, chapter 3 & 4).

Enhanced antigen uptake by dendritic cells after vaccination with a Toll-Like Receptor adjuvant conjugated to a long peptide, is mediated by a different receptor than the cognate Toll-Like Receptor (this thesis, chapter 5).

Vaccine induced T cells in which cbl-b is (temporarily) inhibited, has great potential for future cancer therapy (this thesis, chapter 6).

Long synthetic peptide vaccines have once been considered as “short synthetic peptide” vaccines (Townsend et al., Cell 1986;44(6):959-68 & Gao et al., 1991;147(10):3268-73).

Longevity of antigen presentation and activation status of APC are decisive factors in the balance between CTL immunity versus tolerance (Den Boer et al., J. Immunology 2001; 167(5):2522-8).

The Y1 receptor for Neuropeptide Y: a key modulator of the adaptive immune system (Wheway et al., 2007;28(2):453-8).

The purpose of life is much larger than what the practice of science can achieve (V. K.)

Facts do not cease to exist because they are ignored (Aldous Huxley).

The number one rule of science is to have fun.

Nothing in life is to be feared. It is only to be understood (Marie Curie).