Clinical evidence for a protective role of lipocalin-2 against MMP-9 autodegradation and the impact for gastric cancer

Department of Gastroenterology and Hepatology, Leiden University Medical Centre, Leiden, The Netherlands; ¹Department of Biochemistry, University Bielefeld, Bielefeld, Germany; ²TNO Quality of Life, Biomedical Research, Leiden, The Netherlands

European Journal of Cancer 2007, in press
Abstract

Recently, complexes of matrix metalloproteinase MMP-9 with lipocalin-2 (neutrophil gelatinase-associated lipocalin) were found in the urine obtained from breast cancer patients, while these were completely absent in that obtained from healthy controls. In vitro data suggested a possible role for lipocalin-2 in the protection of MMP-9 against autolysis.

To establish this effect in vivo, we determined the presence of MMP-9, lipocalin-2 and their complex in tumour tissue from 81 gastric cancer patients. The effect of the presence of the individual parameters, the complexes, and the inhibitors TIMP-1 and TIMP-2 on MMP-9 activity was evaluated with a bioactivity assay. Immunohistochemical (double) staining identified epithelial cells as the most likely cellular source. Finally, evaluation of all these parameters with clinicopathological scores revealed that tumour MMP-9/lipocalin-2 complexes were significantly related with the classifications of Laurén and WHO, and highly associated with worse survival in Cox’s univariate (HR 2.087, \(P = 0.006 \)) and multivariate analysis (HR 2.095, \(P = 0.025 \)).
Introduction

Lipocalin-2 (also known as neutrophil gelatinase-associated lipocalin) is a member of the highly heterogeneous family of lipocalins, sharing a common tertiary structure [1, 2]. Lipocalin-2 has initially been discovered in specific granules of human neutrophils [3] and was later shown to be expressed also by certain epithelial cells, in particular during inflammatory or cancerous circumstances [4-10]. There is little information about the physiological functions of lipocalins, but lipocalin-2 has been associated with cellular iron uptake, antibacterial activity, and epithelial cell differentiation [2, 9].

Enhanced tissue, blood and urine levels of matrix metalloproteinase-9 (MMP-9) have been associated with the malignancy of various tumour types [11-14]. Using quantitative zymography and immunoassays we have previously shown that MMP-9 as well as MMP-2 are enhanced in gastric cancer tissue and that high levels are associated with worse survival of the patients [15, 16]. Next to MMP-9 and MMP-2, the zymograms revealed extra bands, particularly between 125-135 kDa. These bands have been described before in the urine obtained from cancer patients, and are most likely complexes of MMP-9 with lipocalin [17, 18]. In vitro experiments suggested a role for lipocalin-2 in the protection of MMP-9 against autolysis [17].

To investigate the suggested relevance of MMP-9/lipocalin-2 complexes in vivo, we determined the levels of MMP-9, lipocalin-2 and their complex in tissue homogenates from 81 gastric carcinomas in comparison with adjacent normal mucosa from the same patients. We used immunohistochemical staining of paraffin-embedded tissue sections to establish the cellular origin of MMP-9 and lipocalin-2. To confirm the histological findings, the levels of MMP-9, lipocalin-2 and the MMP-9/lipocalin-2 complexes in the homogenates were compared with markers for neutrophils, a known source of MMP-9 and lipocalin-2. The effect of complex formation between MMP-9 and lipocalin-2 on the MMP-9 activity state was evaluated using a specific MMP-9 bioactivity assay. Finally, the possible clinical consequence of the presence of MMP-9/ lipocalin-2 complexes in gastric tumours was evaluated by examining for correlations with established clinicopathological parameters of the carcinoma patients, including univariate and multivariate Cox proportional hazard survival analyses.
Materials & methods

Patients and study design

Fresh tissue specimens from 81 patients (21 females and 60 males, mean age 65.9 years, range 35.1-91.3) who underwent resection for primary gastric adenocarcinoma between 1984 and 1996 at the department of Oncologic Surgery, Leiden University Medical Centre were collected prospectively. Samples from the mid-central non-necrotic part of the carcinoma and from normal mucosa, taken approximately 10 cm from the tumour, were snap-frozen and stored at –70°C until extraction. All carcinomas were classified according to the TNM classification (UICC 1992), and localization as well as diameter of the tumour was registered. Microscopical histological parameters, including differentiation-grade, WHO-, Borrmann-, and Laurén-classification, as well as the presence of intestinal metaplasia in the normal gastric mucosa, were revised by a gastroenterologist and a pathologist. All patients entered the study at operation date, and the patient’s time experience ended in the event of death or, when still alive, at the common closing date. The minimal follow-up was 33 months with a decreasing overall survival according to TNM stage, i.e. from TNM I (52.2%, n=23), to TNM II (26.9%, n=26), to TNM III (28%, n=25), and to TNM IV (0%, n=7). The study was performed according to the instructions and guidelines of the LUMC medical ethics committee.

Tissue preparation and protein concentration

Homogenisation of tissue specimens and determination of protein concentrations were performed as described previously [15].

MMP-9/lipocalin-2 complex zymography

Quantitative gelatin zymography for MMP-9/lipocalin-2 complexes was performed as described before [15], using an Ultrosan XL Laser Densitometer (LKB) for quantification. The MMP-9/lipocalin-2 complex levels in tissue homogenates were expressed in arbitrary units (AU) per mg protein.

ELISAs for MMP-9, lipocalin-2, MMP-9/lipocalin-2-complexes, MMP-8 and TIMPs

Total antigen levels of MMP-9, lipocalin-2, and MMP-8 were determined using previously described ELISAs [19-22]. The concentrations of MMP-9/lipocalin-2 complexes, TIMP-1 and TIMP-2 were measured using commercial ELISAs according to the manufacturer instructions (R&D Systems Europe, Abingdon, UK). The MMP-9/lipocalin-2 ELISA immobilizes complexes via anti-MMP-9 antibodies followed by detection using anti-lipocalin-2 antibodies and does not detect MMP-9 or lipocalin-2 in their free forms.
MMP-9 activity assay

The bioactivity assay (BIAs) for MMP-9 was done as described previously [14, 19, 22]. This assay detects active MMP-9 and total MMP-9 levels in parallel in 96-wells plates coated with MMP-9 specific antibodies and using modified MMP-sensitive pro-urokinase as substrate. The fraction of the latent MMP-9 proform is calculated by subtraction of active from total MMP-9.

Myeloperoxidase (MPO) activity assay

MPO activity was measured as described previously [23]. In short, tissue homogenates were incubated with 0.5% hexadecyl-trimethylammonium bromide in 50 mM potassium phosphate buffer (pH 5.5), plus 0.026% ortho-dianisidine dihydrochloride substrate and 0.018% H₂O₂. The reaction kinetics were followed for 30 min at 450 nm in 96-well plates. The specificity of the reaction was checked with sodium azide (0.1 mM). All samples were analyzed in duplicate and standardized using a homogenate of pooled human neutrophils, and MPO activity was expressed in arbitrary units.

Immunohistochemistry and immunofluorescence double staining

Paraffin sections (5 µm) from the same tumours as used for the homogenates were deparaffinized and stained for the localisation of MMP-9 and lipocalin-2. Antigen retrieval was performed through boiling in a 0.01 M citrate solution (pH 6.0) for 12 minutes in a microwave oven. After being rinsed in PBS and incubated with 10 % of normal goat serum (Dako) for 30 minutes, the sections were incubated with the primary antibody polyclonal rabbit anti-lipocalin-2 (1:100, from Drs H. Tschesche and O. Hiller) or polyclonal rabbit anti-MMP-9 (1:400, TNO, Leiden, The Netherlands) overnight at 4 degrees. After washing, the sections were incubated with biotinylated goat anti-rabbit 1:400 (Dako) for 30 minutes, followed by washing and incubation with Streptavidin/ABCcomplex/HRP (DakoCytomation) for 30 minutes. The brown colour was developed by 0.004 % H₂O₂ (Merck) and 0.05 % diaminobenzidine tetrahydrochloride (Sigma) in 0.01 M Tris-HCl pH 6.0 for 10 minutes. The slides were counterstained with Mayer’s haematoxylin (Merck). For specific cell recognition, i.e. epithelial cells, (myo)fibroblasts, neutrophils and endothelial cells, sequential tissue sections were stained with mouse anti-pan-cytokeratin (1:1000, clone C11, Santa Cruz biotechnologies, Santa Cruz, USA), mouse anti-vimentin (1:400, clone V9 Santa Cruz), mouse anti-smooth muscle actin (1:1000, clone ASM-1, Progen Heidelberg, Germany), rabbit anti-myeloperoxidase (1:1000, Dako) and mouse anti-CD31 (1:400, clone JC70A, Dako) followed by appropriate second antibodies and staining procedures. Immunofluorescence double staining was performed as described before [24]. In short, sections were incubated for 1 hr with rabbit polyclonal anti-lipocalin-2 and mouse monoclonal anti-MMP-9 (clone GE-213, 1:400, NeoMarkers, Fremont, CA) antibodies, appropriately
Chapter 6

Diluted in PBS with 1% BSA, washed, and incubated with respectively Alexa Fluor 488- and 546-conjugated anti-rabbit and anti-mouse antibodies (Molecular Probes, Leiden, The Netherlands) diluted in PBS-BSA. After incubation and washing, the sections were mounted in Mowiol. A Zeiss LSM 510 confocal microscope equipped with argon and He/Ne lasers and a 20x objective were used to obtain the images.

Statistical analysis

Differences between normal and tumour values for all parameters were calculated using the Wilcoxon signed ranks test and visualized by Box-Whisker graphs using lower and upper margins of 5%. Correlations between parameters were determined according to Spearman’s Rho test. For the survival analyses the clinicopathological parameters were dichotomized as described previously [15], unless indicated. Cut off values for MMPs and related factors were optimised. Survival analyses were performed with the Cox proportional hazards model using the SPSS Windows Release 12.0.1. Statistical Package (2004, SPSS Inc., Chicago, Illinois, USA). Multivariate survival analyses were performed using the Cox proportional hazards method by separately adding

![Zymogram and Immunoblot](image.png)

Figure 1. Zymogram and immunoblot showing MMP-9, MMP-9/lipocalin-2 complexes and lipocalin-2 in a representative gastric cancer tissue homogenate (lane 2-4). MMP-9 activity is located in the zymograms (lane 2) between 70-92 kDa, representing active MMP-9 and pro-MMP-9, and at 135 kDa corresponding with MMP-9/lipocalin-2 complex standard (lane 1). The immunoblots show corresponding complex bands for MMP-9 (lane 3) and lipocalin-2 (lane 4) with extra bands at approximately 25 and 50 kDa representing respectively the monomer and homodimer forms of lipocalin-2. Lane 1 contains 20 µl standard from the MMP-9/lipocalin-2 ELISA (≈ 0.8 ng).
Clinical evidence for a protective role of lipocalin-2 against MMP-9 autodegradation

The significant MMP variables to the dichotomized clinicopathological parameters. Survival curves were constructed using the method of Kaplan and Meier including the Log-rank test. Differences were considered significant when \(P \leq 0.05 \).

![Box plots](image)

Figure 2. Levels of a) MMP-9/lipocalin-2 complex in AU/mg protein, b) MMP-9/lipocalin-2 complex in ng/mg protein, c) MMP-9 in ng/mg protein, and d) lipocalin-2 in ng/mg protein in carcinoma tissue and adjacent normal mucosa from 81 gastric cancer patients. \(n=81 \) unless indicated.
Results

Quantification of MMP-9/lipocalin-2 complexes in gastric cancer tissue homogenates

The presence of MMP-9/lipocalin-2 complexes in tissue homogenates from gastric cancer patients was determined using zymography and ELISA. Figure 1 shows a typical gastric cancer homogenate with in the zymogram abundant MMP-9 mediated lysis and a smaller band at molecular weight 135 kDa, corresponding with standard MMP-9/lipocalin-2 complex. The nature of this band was further verified using immunoblots for respectively MMP-9 and lipocalin-2 under normal (Figure 1) and reduced conditions (not shown). The amount of the MMP-9/lipocalin-2 complexes was quantified from the zymograms, using laser densitometry (Figure 2a). MMP-9/lipocalin-2 complexes were significantly enhanced in cancer tissue compared with control mucosa (27.3±2.0 versus 14.5±1.4 AU/mg protein, P<0.001, n=81). The data from this semi-quantitative assay were compared with the results obtained with a commercial ELISA (Figure 2b). The correlation between both assays was highly significant (rho = 0.488, P<0.0001, n=75, i.e. 5 normal mucosa and 70 carcinoma homogenates).

Levels of MMP-9 and lipocalin-2 in gastric cancer tissue homogenates

The tissue levels of MMP-9 and lipocalin-2 are shown in figure 2c and d. The gastric carcinomas contained significant higher concentrations of MMP-9 (P<0.001) and

| Table 1 - Correlation coefficients (ρ plus P-values) for MMP-9, lipocalin-2 and MMP-9/lipocalin-2 complexes in relation to myeloperoxidase (MPO), MMP-8 and TIMP-1 in 162 gastric cancer tissue homogenates (81 normal/81 cancer). |
|--------------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|
MMP-9 ng/mg protein	Lipoc-2 ng/mg protein	MMP-9/Lipocalin-2 complex ng/mg protein	MMP-9 active U/mg protein	MMP-9 latent U/mg protein	
MMP-9					
ng/mg protein	0.438 (0.000)	0.641 (0.000)	0.240 (0.003)	0.817 (0.000)	
Lipocalin-2 ng/mg protein		0.273 (0.001)			
MMP-9/Lipoc-2 AU/mg protein			0.166 (0.038)	0.586 (0.000)	
MMP-9 active U/mg protein	0.486 (0.000)	0.280 (0.000)	0.332 (0.000)	0.073 (ns)	0.462 (0.000)
MPO					
AU/mg protein	0.810 (0.000)	0.482 (0.000)	0.578 (0.000)	0.128 (ns)	0.734 (0.000)
MMP-8 ng/mg protein					
TIMP-1 ng/mg protein	0.358 (0.000)	0.363 (0.000)	0.315 (0.000)	-0.097 (ns)	0.240 (0.004)

�: not significant
lipocalin-2 \((P=0.002)\) than adjacent normal tissues. In general, lipocalin-2 was more abundantly present than MMP-9, in specific cases even more than 100 times higher.

Correlation between MMP-9 and MMP-9/lipocalin-2 with MMP-9 activity state

The correlation of MMP-9, lipocalin-2, and MMP-9/lipocalin-2-complex with MMP-9 activity in tissue homogenates of gastric cancer patients is shown in Table 1. Active MMP-9 levels correlated significantly with the total antigen level of MMP-9, but more interestingly also with the MMP-9/lipocalin-2 concentration \((P=0.038)\), suggesting a protective role for lipocalin-2-complex formation in MMP-9 (auto)activation. The tis-

![Figure 3](image)

Figure 3. Typical immunohistochemical staining of a human gastric intestinal type carcinoma for: a) MMP-9 \((200x)\) and b) lipocalin-2 \((200x)\). Black, red, green and yellow arrows indicate, respectively, epithelial cells, neutrophil-like cells, (myo)fibroblast like cells and endothelial cells. Protein levels in corresponding homogenate for MMP-9, lipocalin-2 and complex are respectively 29 ng/mg, 4928 ng/mg and 17 AU/mg protein. c) Immunofluorescence double staining \((400x)\) for MMP-9 (red) and Lipocalin-2 (green). Yellow colour suggests complex formation.
sue concentration of TIMP-1, the most relevant tissue inhibitor of MMP-9, was equally correlated with the levels of MMP-9 and lipocalin-2, but not with MMP-9 activity.

Immunohistochemical staining for MMP-9 and lipocalin-2

To establish the cellular source of the MMP-9/lipocalin-2 complexes, sequential paraffin sections adjacent to the tissue used for homogenates were stained for MMP-9 and lipocalin-2. Normal mucosa showed barely any staining for MMP-9 nor lipocalin-2 (not shown). In carcinoma tissues staining for MMP-9 was found in neutrophils and a substantial part of the epithelial cells, occasionally in endothelial cells, and incidentally in muscle cells, macrophages, and fibroblasts (Figure 3a). In neutrophils and epithelial cells lipocalin-2 was similarly distributed compared with MMP-9, but lipocalin-2 was additionally present in tumour epithelial subgroups which lacked MMP-9 staining (Figure 3b). Endothelial cells and fibroblasts showed little or no staining for lipocalin-2. Immunofluorescence double staining confirmed that particular epithelial cells stained for lipocalin-2 but not for MMP-9 (Figure 3c red versus green). Furthermore this staining revealed that only a fraction of MMP-9 and lipocalin-2 was actually in close proximity (Figure 3c, yellow versus green). Yellow staining was found in particular at the periphery of cells, suggesting that the majority of both proteins is uncomplexed and presumably still compartmentalized within the cells, as suggested by zymographic analysis.

Correlations between MMP-9, lipocalin-2, MMP-9/lipocalin-2, MMP-8 and MPO

To confirm the similarities and the apparent difference between MMP-9 and lipocalin-2 in cellular origin, as found by immunohistochemistry, the concentrations of MMP-9, lipocalin-2 and MMP-9/lipocalin-2-complex in the tissue homogenates were evaluated for correlations with the levels of MPO and MMP-8 (Table 1). MPO, a commonly used cell marker for neutrophils, correlated strongly with MMP-8, a collagenase abundantly present in neutrophils (0.445, \(P < 0.0005 \)) as well as with MMP-9, but the correlation with lipocalin-2 was considerably less, suggesting a possible other source of lipocalin-2 than neutrophils only.

Relation between MMP-9/lipocalin-2 complexes and clinicopathological parameters

The MMP-9/lipocalin-2 levels were significantly enhanced in differentiated tumours according to the WHO classification (30.9±2.5 vs. 19.6±2.8 AU/mg protein, \(P \leq 0.006 \)) and in tumours of the intestinal type (30.5±2.6 vs. 21.9±2.7 AU/mg protein, \(P \leq 0.04 \)). MMP-9/lipocalin-2 levels showed a trend to increase with higher TNM stages. Dichotomization of the patients, based on low (AU<36) or high (AU>36) MMP-9/lipocalin-2 complex values in their tumour, showed a significant correlation with overall survival.
Clinical evidence for a protective role of lipocalin-2 against MMP-9 autodegradation

Figure 4. Kaplan-Meier survival curve for a cohort of gastric cancer patients subdivided by low (≤36 AU/mg protein) or high (>36 AU/mg protein) levels of MMP-9/lipocalin-2 complex in their tumour tissue homogenate.

Table 2 - Univariate and multivariate Cox proportional hazard overall survival analyses for low or high levels of MMP-9/lipocalin-2 in tissue homogenates of gastric cancer versus different clinicopathological parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Univariate</th>
<th>Multivariate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>HR</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F/M</td>
<td>21/60</td>
<td>1.247</td>
</tr>
<tr>
<td>Age</td>
<td>40/41</td>
<td>1.323</td>
</tr>
<tr>
<td>TNM</td>
<td>1</td>
<td>23/81</td>
</tr>
<tr>
<td>2</td>
<td>26/81</td>
<td>1.984</td>
</tr>
<tr>
<td>3</td>
<td>25/81</td>
<td>1.586</td>
</tr>
<tr>
<td>4</td>
<td>7/81</td>
<td>3.248</td>
</tr>
<tr>
<td>Laurén</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dif/mx vs inte</td>
<td>30/50</td>
<td>1.103</td>
</tr>
<tr>
<td>WHO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>diff vs undiff</td>
<td>54/26</td>
<td>0.881</td>
</tr>
<tr>
<td>Bormann</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fung. vs infiltr.</td>
<td>55/24</td>
<td>1.025</td>
</tr>
<tr>
<td>Localization</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cardia vs rest</td>
<td>36/45</td>
<td>0.603</td>
</tr>
<tr>
<td>Diameter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤5 vs >5 cm</td>
<td>47/34</td>
<td>1.062</td>
</tr>
<tr>
<td>Eosinophils</td>
<td></td>
<td></td>
</tr>
<tr>
<td>few vs many</td>
<td>56/24</td>
<td>1.220</td>
</tr>
<tr>
<td>Intest. metaplasia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>not vs present</td>
<td>39/42</td>
<td>0.551</td>
</tr>
<tr>
<td>MMP-9 antigen</td>
<td></td>
<td></td>
</tr>
<tr>
<td><median></td>
<td>40/40</td>
<td>1.143</td>
</tr>
<tr>
<td>Lipocalin-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td><median></td>
<td>40/39</td>
<td>1.029</td>
</tr>
<tr>
<td>MMP-9/lipocalin-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤36 vs >36 AU</td>
<td>58/23</td>
<td>2.087</td>
</tr>
</tbody>
</table>

NS: non significant
(Log Rank 8.04, $P<0.005, n=81$), as shown in figure 4. Analysis of the MMP-9/lipocalin-2 complex ELISA data showed a similar trend but did not reach statistical significance (Log Rank, 3.04, $P=0.0815, n=70$).

Survival analyses

The relation of MMP-9/lipocalin-2 complexes with survival was further characterized with Cox’s uni- and multivariate analyses against the clinicopathological parameters (Table 2). The level of MMP-9/lipocalin-2 was significantly associated with worse survival and kept its significance in multivariate analyses, indicating its value as an independent prognostic factor.

Discussion

High levels of lipocalin-2 have been reported in various types of cancer [6-10]. Our study shows that lipocalin-2 levels are indeed significantly enhanced in gastric carcinomas compared to adjacent control tissue. Moreover and more interestingly, our data show that the complexes of lipocalin-2 with MMP-9 are also significantly enhanced in human gastric tumours.

In vitro experiments showed that lipocalin-2 is able to induce the expression of E-cadherin, to promote the formation of polarized epithelia, and to diminish the invasiveness and metastasis of Ras-transformed cells [25], suggesting a protective role against cancer. Other studies reported a positive correlation between lipocalin-2 expression levels and the growth rate of lipocalin-2 transfected MCF-7 human breast carcinoma cells, which were subcutaneously implanted in immuno-deficient mice [18]. Immunohistochemical analyses of these xenografted tumours showed that the over-expression of lipocalin-2 was accompanied by enhanced levels of MMP-9, suggesting the formation of complexes between MMP-9 and lipocalin-2. The formation of MMP-9/lipocalin-2 complexes has previously been shown to protect MMP-9 from auto-degradation *in vitro* [17, 18]. MMP-9/lipocalin-2 complex formation could result in increased extracellular, tumour-associated MMP-9, and hence in enhanced tumour growth as recently suggested by Fernández et al. [18]. We found that in gastric cancer tissue lipocalin-2 levels are in general 30 times higher than corresponding MMP-9 levels, presumably leading to MMP-9/lipocalin-2 complex formation of a substantial part of the MMP-9 fraction after it has been released from the cells. These complexes were significantly correlated with the active, as well as the latent fraction of MMP-9. Therefore, our data support the hypothesis that enhanced production of lipocalin-2 in cancerous tissue stimulates the formation of a complex with MMP-9, playing a role in the maintenance of an extracellular pool of a latent form of this powerful proteinase,
Clinical evidence for a protective role of lipocalin-2 against MMP-9 autodegradation

by prevention from auto-degradation. This latent pool of secreted, lipocalin-2-bound MMP-9 has previously been shown to be important for the spatial control of VEGF release from the ECM and hence for enhanced angiogenesis [26]. Our study does not provide information about the presence and/or role of MMP-9/lipocalin-2/TIMP-1 complexes. These ternary complexes have previously been isolated from phorbol myristate acetate stimulated neutrophils and showed low gelatinase activity, as expected [27]. In our study, total TIMP-1 levels correlated significantly with all the forms of MMP-9, except for the active form of MMP-9, suggesting that other factors are involved in regulating the activity of MMP-9, besides the ratio between MMP-9 and TIMP-1. TIMP-2 levels were weakly inversely correlated with MMP-9 antigen levels, suggesting little or no mutual interaction (data not shown).

The quantitative determination of MMP-9 and lipocalin-2 in tissue homogenates, as performed in this study, has several advantages compared to semi-quantitative immunohistological detection methods but obviously does not provide information about the localization of the proteins. Our immunohistochemical data revealed that lipocalin-2 as well as MMP-9 in gastric cancers are mainly present in neutrophils and epithelial cells, but that epithelial expression of MMP-9 is depending on the individual cancer and on the location within the tumour. MMP-9 was furthermore found in (myo) fibroblast-like cells and endothelial cells. These data are in accordance with what has been found previously in colonic cancer [6, 28]. Our fluorescent double-staining data suggest that, although MMP-9 and lipocalin-2 seem present in close proximity especially within the cells, overlap of green and red colours, presumably representing extra-cellular complex formation, is limited and mainly restricted to peri-cellular areas. Whether the enhancement of MMP-9/lipocalin-2 complexes in gastric cancer compared with adjacent normal mucosa was caused by the influx of neutrophils or alternatively by upregulated expression in malignant epithelial cells, could not be established in this study. The finding that high numbers of intra-tumoural neutrophils are associated with better survival of patients with gastric cancer [29], would suggest the latter.

From this study, the clinical relevance of MMP-9/lipocalin-2 complex formation appears most obvious from the correlation with overall survival of the patients. Enhanced levels of these complexes were highly prognostic for worse survival, whereas the levels of single MMP-9 and lipocalin-2 were not. The finding that MMP-9/lipocalin-2 levels are increased in gastric cancer tissue and that enhancement might be associated with clinical outcome of the patients is supported by a recent study reporting that similar complexes were present in approximately 90% of the urines obtained from breast cancer patients, but not in those from healthy controls [18]. The prognostic value of MMP-9/lipocalin-2 complexes is in accordance with the presumed role of lipocalin-2 in the protection of secreted MMP-9 against auto-degradation, which contributes to
an enhanced pool of potentially active MMP-9, a proteolytic enzyme associated with angiogenesis and tumour growth. High total MMP-9 levels were not associated with survival in the present study. This is not in agreement with what we have published previously [15], but those earlier data were based on a smaller group of patients and on detection of MMP-9 activity instead of total antigen level. The different outcome between both studies indicates the delicacy of the use of proteinase levels as prognostic indicators, as discussed before [16, 30]. Apparently not just the enhanced presence, but more the (potential) activation state of the proteinase, i.e. the result of, respectively, production, release, activation, and the inactivation by inhibitors, seems to be crucial, similar to what has been described for other enzymes playing a role in gastric cancer like urokinase and MMP-2 [16, 31]. Additionally, our data indicate that prevention of auto-degradation of MMP-9 by lipocalin-2 might play an important role too.

In conclusion, we have shown for the first time that complexes between MMP-9 and lipocalin-2 are present in enhanced levels in gastric cancer tissue and that high levels are associated with worse survival of the patients. The potential clinical value of our findings should be confirmed in larger groups of cancer patients. Recently the enzymatic activity of MMP-9/lipocalin-2 complex has indeed been found to correlate significantly with the depth of tumour invasion in esophageal squamous cell carcinomas [32].

Acknowledgements

We are grateful to Dr. Oliver Hiller (Department of Biochemistry, Bielefeld University, Germany), Dr. Arko Gorter, Enno Dreef and Frans Prins (Department of Pathology, Leiden University Medical Centre, The Netherlands) for their helpful assistance with immunohistochemistry.

Conflict of interest

None declared
References

