Annexes

1 Design indicator experiments
2 Random list with destinations
3 Table of contents: Software psychology
4 Table of contents: Designing the user interface
5 Structure of: A web-based handbook
6 Table of contents: Encyclopaedia of Ergonomics and Human Factors
Annex 1: Design indicator experiments

1.1 Subjects

In the experiment 304 train passengers leaving Amsterdam Central Station participated.

When the train left Amsterdam CS, the passengers were asked if they were willing to participate in the experiment. Only those trains having sufficient time to the next station were selected. For the passengers the following criteria were applied.

- The first passenger sitting in the front or the rear of the train was selected.
- Only passengers traveling alone were selected.
- Only passengers not busy were selected (e.g. reading passengers were skipped).

Table 1. The number of passengers per indicator type (trains and destinations) and per variant (having double trains/destinations and without doubles)

<table>
<thead>
<tr>
<th></th>
<th>Having double trains</th>
<th>No double trains</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trains indicator</td>
<td>50+40</td>
<td>39+23</td>
<td>152</td>
</tr>
<tr>
<td>Destinations indicator</td>
<td>40+50</td>
<td>23+39</td>
<td>152</td>
</tr>
<tr>
<td>Total</td>
<td>190</td>
<td>124</td>
<td>304</td>
</tr>
</tbody>
</table>

The first number indicates the number of passengers that worked with that indicator as the first one. The second number indicates the number of passengers that worked with that indicator as the second one.
Table 1 presents a table with the number of passengers for each indicator.

1.2 Materials

A trains indicator (a list of trains arranged using departure time) and a destinations indicator (a list of destinations arranged alphabetically) were used. In addition, for each indicator there was a ‘double trains’ version and a ‘single trains’ version. In total, there were four indicators in the indicator experiments. One half of the subjects worked with the trains indicator first and the destinations indicator as last. For the other half of the subjects the destinations indicator was the first one.

The experimental indicators present the information of the Amsterdam Central Station indicator on a normal working day between 13:00 and 14:00 hours. There were the following differences between the real life indicator in Amsterdam Central Station and the experimental one used by the passengers in the train.

- For some trains the information on the experimental indicators was shortened. ‘Brussel zuid’ was shortened to ‘Brussel’ on the experimental one. ‘Naarden-Bussum’ was shortened to ‘Naarden’. ‘Zandvoort aan Zee’ was ‘Zandvoort’. These abbreviations were needed for two reasons. At one hand the experimental indicator should have a size that fits on the lap of a passenger. At the other hand the text on the experimental indicators should not become illegible because of the size of the characters.
- Only trains departing between 13.00 and 14.00 hours were on the experimental indicator. At 13.00 hours the indicator in Amsterdam Central Station presents trains from 13:00 to 14:50 hours.
- Inland trains only were used.
- Only trips to destinations mentioned on the indicator were used for searching departure time.

It is supposed that all these changes together make the experimental indicator more easy to use. The results therefore will be an underestimation. Passengers performance with the real Amsterdam Central Station indicator will be worse than with the experimental indicators.
For each indicator five destinations were asked. The experimenter selected these destinations from a random list. See Annex 2.

1.3 Procedure

- The first question asked focused on travel behaviour: travel frequency, the destination and how the passenger informed himself about the departure track of the train he is sitting in. The experimenter also asked if the passenger had seen and had used the Amsterdam Central Station indicator.
- Then the experiment started presenting a trains or a destinations indicator. The experimenter asked time of departure for five destinations.
- After this the indicator was taken out of sight of the passenger, the experimenter asked how the information on the indicator was arranged.
- The experiment was repeated with the other indicator (trains indicator or destinations indicator). Again departure time of five trains was asked.
- At the end the experimenter asked to compare the two indicators and assign a school mark to each one.

1.4 Search time

Search was registered and defined as the time between the presentation of the destination to find and the moment the passengers mentioned the departure time of the train to that destination.

1.5 Errors

The answers were classified as ‘good’, ‘wrong’ and ‘don’t know’. The answer was ‘good’ when the train was calling the destination mentioned. Even when there was a better solution, e.g. by changing trains. ‘Wrong’ means this train does not lead to the destination asked by the experimenter even not with changing trains.
1.6 Delay

‘Delay’ is the time between arrival of the first arriving train and the train the passenger mentioned. The mean delay is the total of the delays divided by the number of passengers that searched departure time for that train.

1.7 Passenger evaluation

After having search for five destinations on a trains indicator and five destinations on a destinations indicator passengers were asked to assign a school mark (minimal 0, maximal 10) to both indicators.
Annex 2: Random list with destinations

In the indicators experiments passengers were asked to find departure time of trains. For selecting a destination the experimenter used the random list below. This list includes all destinations mentioned on the indicator. The experimenter started at the top and for each destination needed for the next question of the current or next passenger he took the following destination of this list.

1. Arnhem
2. Enkhuizen
3. Maastricht
4. Den Helder
5. Zwolle
6. Dordrecht
7. Rotterdam
8. Eindhoven
9. Enschede
10. Haarlem
11. Zandvoort
12. Heiloo
13. Alkmaar
14. Brussel
15. Naarden
16. Woerden
17. Maarssen
18. Hengelo
19. Vlissingen
20. Heerlen
21. Zaandam
22. Amersfoort
23. Gouda
24. Weesp
25. Almere
26. Den Haag
27. Groningen
28. Hoofddorp
29. Schiphol
30. Beverwijk
31. Roosendaal
32. Hilversum
33. Nijmegen
34. Castricum
35. Breukelen
36. Utrecht
37. Hoorn
38. Uitgeest
39. Leeuwarden
Annex 3: Table of contents: Software psychology

PREFACE xi

1. MOTIVATION FOR A PSYCHOLOGICAL APPROACH I
1.1. Introduction to Software Psychology 2
1.2. Scope of Software Psychology 3
 1.2.1. Programming Languages 4
 1.2.2. Operating Systems Control Languages 4
 1.2.3. Database Query Facilities 4
 1.2.4. Editors 5
 1.2.5. Terminal Interactions 5
1.3. Goals of Software Psychology 5
 1.3.1. Enhance Programming Practice 6
 1.3.2. Refine Programming Techniques 6
 1.3.3. Improve Teaching 7
 1.3.4. Develop Software Metrics 8
 1.3.5. Assess Programmer Aptitude and Ability 8
1.4. Review of Sources 9
1.5. Practitioner's Summary 10
1.6. Researcher's Agenda 10

2. RESEARCH METHODS 13
2.1. Introspection and Protocol Analysis 14
2.2. Case Studies and Field Studies 15
2.3. Controlled Experimentation 16
 2.3.1. Simple Experimental Designs 16
 2.3.2. Subjects 17
 2.3.3. Statistical Methods: t-test 17
 2.3.4. Two-Factor Experiments 20
 2.3.5. Three-Factor Experiments 21
 2.3.6. Correlation Studies 22
 2.3.7. Counterbalanced Orderings 24
2.4. Statistical Analysis by Computer 25
2.5. Measurement Techniques 25
 2.5.1. Performance Tasks: Comprehension 26
 2.5.2. Performance Tasks: Composition 27
 2.5.3. Performance Tasks: Debugging 28
 2.5.4. Performance Tasks: Modification 29
 2.5.5. Time 29
 2.5.6. Memorization/Reconstruction 29
 2.5.7. Background 34
 2.5.8. Subjective Measures 35
2.6. Experimental Ethics 37
2.7. Practitioner's Summary 37
2.8. Researcher's Agenda 37

3. PROGRAMMING AS HUMAN PERFORMANCE 39
3.1. Classes of Computer Users 40
3.2. Programming 41
 3.2.1. Learning 41
 3.2.2. Design 42
 3.2.3. Composition 42
 3.2.4. Comprehension 42
 3.2.5. Testing 43
 3.2.6. Debugging 43
 3.2.7. Documentation 44
 3.2.8. Modification 44
3.3. The Programming Environment 44
 3.3.1. Physical and Social Environment 44
 3.3.2. Managerial Environment 45
3.4. The Syntactic/Semantic Model 46
 3.4.1. Cognitive Structures Are Multileveled 47
 3.4.2. Program Composition in the Model 49
 3.4.3. Program Comprehension in the Model 51
 3.4.4. Debugging and Modification in the Model 53
3.4.5. Learning in the Model 54
3.5. Personality Factors 55
3.6. Psychological Testing 57
3.7. Practitioner's Summary 62
3.8. Researcher's Agenda 62

4. PROGRAMMING STYLE 65
4.1. Introduction 66
4.2. Stylistic Guidelines 66
 4.2.1. Commenting 66
 4.2.2. Variable Names 70
 4.2.3. Indentation 72
4.3. Programming Language Features 74
 4.3.1. Conditional Statements 74
 4.3.2. Iteration and Recursion 78
 4.3.3. Syntactic Choice 79
 4.3.4. Structured Control Structures 79
 4.3.5. Flowcharting 81
4.4. Debugging Studies 86
4.5. Practitioner's Summary 90
4.6. Researcher's Agenda 90

5. SOFTWARE QUALITY EVALUATION 93
5.1. Introduction 94
5.2. Boehm, Brown and Lipow's Metrics 95
5.3. Gilb's Software Metrics 98
5.4. Halstead's Software Science 101
5.5. Programming Productivity Measures 106
5.6. Reliability 109
5.7. Maintainability 112
5.8. Complexity/Comprehension 113
 5.8.1. Logical, Structural, and Psychological Complexity 113
 5.8.2. McCabe's Complexity Measure 114
 5.8.3. Structural Complexity 118
 5.8.4. Comprehensibility 119
5.9. Practitioner's Summary 120
5.10. Researcher's Agenda 120

6. TEAM ORGANIZATIONS AND GROUP PROCESSES 123
6.1. Introduction 124
6.2. Team Organizations 125
 6.2.1. The Conventional Team 125
6.2.2. The Egoless Team 126
6.2.3. Chief Programmer Teams 127
6.3. Group Processes 129
 6.3.1. Inspection Techniques 129
 6.3.2. Structured Walkthroughs 130
 6.3.3. Formal Technical Reviews 131
 6.3.4. MECCA Method 132
 6.3.5. Peer Review and Peer Rating 133
 6.3.6. Group Testing and Debugging 138
6.4. Practitioner's Summary 140
6.5. Researcher's Agenda 141

7. DATABASE SYSTEMS AND DATA MODELS 143
7.1. Introduction to Database Systems 144
 7.1.1. The Hierarchical Data Model 146
 7.1.2. The Network Model 148
 7.1.3. The Relational Model 154
 7.1.4. Other Data Models 157
 7.1.5. Subschemes and Views 158
7.2. Data Model Selection 161
7.3. Subschema Design 167
7.4. Practitioner's Summary 171
7.5. Researcher's Agenda 171

8. DATABASE QUERY AND MANIPULATION LANGUAGES 173
8.1. Introduction 174
8.2. Issues in Database Usage 175
 8.2.1. Functions 175
 8.2.2. Tasks 176
 8.2.3. Query Features 177
8.3. Language Samples 180
 8.3.1. Host-Embedded vs. Self-Contained 186
 8.3.2. Specification vs. Procedural Languages 186
 8.3.3. Linear Keyword vs. Positional Languages 187
8.4. Experimental Results 188
8.5. Practitioner's Summary 195
8.6. Researcher's Agenda 195

9. NATURAL LANGUAGE 197
9.1. Natural Language Systems 198
9.2. Pros and cons 206
9.3. Experimental Studies 209
9.4. Practitioner’s Summary 213
9.5. Researcher’s Agenda 213

10. INTERACTIVE INTERFACE ISSUES 215
10.1. Introduction 216
10.2. Hardware Options 216
 10.2.1. Keyboards 216
 10.2.2. Soft vs. Hard Copy 218
 10.2.3. Cursor Control Devices 219
 10.2.4. Audio Output 219
 10.2.5. Speech Recognition Systems 220
 10.2.6. Graphics Output, Input, and Interaction 222
10.3. Psychological Issues 224
 10.3.1. Short- and Long-Term Memory 224
 10.3.2. Closure 225
 10.3.3. Attitude and Anxiety 226
 10.3.4. Control 226
10.4. Response Time 228
10.5. Time-Sharing vs. Batch Processing 232
10.6. Text Editor Usage 236
10.7. Menu Selection, Fill-in-the-Blank and Parametric Modes 238
10.8. Error Handling 241
10.9. Practitioner’s Summary 243
10.10. Researcher’s Agenda 244

11. DESIGNING INTERACTIVE SYSTEMS 247
11.1. Introduction to Design 248
11.2. Goals for Interactive Systems Designers 249
 11.2.1. Simplicity 255
 11.2.2. Power 255
 11.2.3. User Satisfaction 256
 11.2.4. Reasonable Cast 256
11.3. Design Process for Interactive Systems 257
 11.3.1. Collect Information 257
 11.3.2. Design Semantic Structures 258
 11.3.3. Design Syntactic Structures 262
 11.3.4. Specify Physical Devices 262
 11.3.5. Develop Software 263
 11.3.6. Devise Implementation Plan 263
 11.3.7. Nurture the User Community 264
 11.3.8. Prepare Evolutionary Plan 265
11.4. Practitioner’s Summary 265

188 Why designers can’t understand their users
11.5. Researcher's Agenda 265

12. COMPUTER POWER TO, OF, AND BY THE PEOPLE 269

BIBLIOGRAPHY 281

SUGGESTED PROJECTS AND EXERCISES 303

THE t DISTRIBUTION 309

NAME INDEX 311

SUBJECT INDEX 315
Annex 4: Table of contents: Designing the user interface

PART I MOTIVATIONS AND FOUNDATIONS 1

1. Human Factors of Interactive Software 3
 1.1 Introduction 4
 1.2 Primary design goals 8
 1.3 Human factors design goals 10
 1.4 Motivations for human factors in design 15
 1.5 Accommodating human diversity 18
 1.6 Information resources 25
 1.7 Three goals 26
 1.8 Practitioner’s summary 33
 1.9 Researcher’s agenda 33
Guidelines documents 33
Books 35
Collections 37

2. Theories, Principles, and Guidelines 41
 2.1 Introduction 42
 2.2 A high-level theory: Syntactic/semantic model of user knowledge 43

2.3 Principles: Recognize the diversity 52
2.4 Eight golden rules of dialog design 60
2.5 Preventing errors 63
2.6 Guidelines: Data Display 69
2.7 Guidelines: Data entry 72
2.8 Prototyping and acceptance testing 73
PART 11 INTERACTION STYLES 83

3. Menu Selection Systems 85
3.1 Introduction 86
3.2 Semantic organization 87
3.3 Item presentation sequence 105
3.4 Response time and display rate 106
3.5 Moving through menus quickly 108
3.6 Menu screen design 110
3.7 Selection mechanisms 117
3.8 Embedded menus 120
3.9 Form fill-in 122
3.10 Practitioner's summary 128
3.11 Researcher's agenda 129
References 130

4. Command Languages 135
4.1 Introduction 136
4.2 Functionality to support users' tasks 139
4.3 Command organization strategies 143
4.4 The benefits of structure 148
4.5 Naming and abbreviations 157
4.6 Command menus 162
4.7 Natural language interaction 165
4.8 Practitioner's summary 172
4.9 Researcher's agenda 173
References 174

5. Direct Manipulation 179
5.1 Introduction 180
5.2 Examples of direct manipulation systems 180
5.3 Explanations of direct manipulation 195
5.4 Potential applications of direct manipulation 204
References 352

9. Printed Manuals, Online Help, and Tutorials 357
9.1 Introduction 358
9.2 Paper versus screens: A comparison 359
9.3 Preparing printed manuals 362
9.4 Preparing online facilities 374
9.5 Practitioner’s summary 381
9.6 Researcher’s agenda 382
References 383

PART IV ASSESSMENT AND REFLECTION 387

10. Iterative Design, Testing, and Evaluation 389
10.1 Introduction 390
10.2 Iterative design during development 391
10.3 Evaluation during active use 397
10.4 Quantitative evaluations 411
10.5 Development life-cycle 413
10.6 Practitioner’s summary 416
10.7 Researcher’s agenda 417
References 417

11. Social and Individual Impact 423
11.1 Hopes and dreams 424
11.2 Fears and nightmares 426
11.3 Preventing the plagues 430
11.4 Overcoming the obstacle of animism 431
11.5 In the long run 434
References 435

Name Index 437

Subject Index 442

SPECIAL COLOR SECTION
Annex 5: Structure of: A web-based handbook

<table>
<thead>
<tr>
<th>Communication Level Guidelines</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compatibility</td>
<td>Minimise the amount of information re-coding that will be necessary.</td>
</tr>
<tr>
<td>Consistency</td>
<td>Minimise the difference in dialogue both within and across various user interfaces.</td>
</tr>
<tr>
<td>Memory</td>
<td>Minimise the amount of information that the user must maintain in working memory.</td>
</tr>
<tr>
<td>Structure</td>
<td>Assist the user in developing a representation of the system's structure so that they can navigate through the interface easily.</td>
</tr>
<tr>
<td>Integration</td>
<td>Provide an integrated interface in which the different components are attuned to each other according to the current task.</td>
</tr>
<tr>
<td>Feedback</td>
<td>Provide the user with feedback and error-correction capabilities.</td>
</tr>
<tr>
<td>Interaction load</td>
<td>Minimise the effort that is required for dialogue actions.</td>
</tr>
</tbody>
</table>

Why designers can’t understand their users
Annex 6: Table of contents: Encyclopaedia of Ergonomics and Human Factors

Table of contents, Part 2 Human Characteristics

- Alternative controls 187
- Anaerobic threshold 190
- Anthropometric databases 191
- Anthropometry of children 193
- Anthropometric terms 197
- Anthropometry 198
- Body sizes of US Americans 199
- Control of rapid actions: motor programming 202
- Dynamic muscle strength 205
- Dynamic properties of human limb segments 207
- Engineering anthropometry 211
- Ergophthalmology: the visual system and work 212
- Event-related potentials 219
- Force exertion: pinching characteristics and strengths 223
- Force exertion for (consumer) product design: information for the design process 226
- Force exertion for (consumer) product design: problem definition 229
- Force exertion for (consumer) product design: research and design 232
- Gaze-based control 234
- Gesture-based control 237
- Hand grip strength 240
- Hand-grip torque strength 247
Why designers can't understand their users

Handgrip characteristics and strength 252
Human muscle 255
Information processing 256
Lifting strategies 260
Maximum holding times of static standing postures 263
Models of attention 266
Multiple resources 271
Muscle strength 276
Muscle terms - glossary 277
Musculo-skeletal system 278
Physical ability testing 279
Physical strength in the older population 282
Physical work capacity (PWC) 285
Postural adaptation 287
Principles of simple movements 292
Psychophysiological fitness for work 296
Push and pull data 299
Pushing and pulling strengths 317
Recumbents 320
Sleeping postures 323
Static and dynamic strength 327
Static muscle strength 328
Strength testing 330
Torque data 334
Trunk muscle force models 343
Visual perception, age, and driving 348
Workload and electroencephalography dynamics 350