
 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/119358 holds various files of this Leiden University 
dissertation. 
 
Author: Mirsoleimani, S.A. 
Title: Structured parallel programming for Monte Carlo tree search 
Issue Date: 2020-06-17 
 
 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/119358
https://openaccess.leidenuniv.nl/handle/1887/1�


1
Introduction

In the last decade, there has been much interest in the Monte Carlo Tree Search
(MCTS) algorithm. It started by the publication “Bandit Based Monte-Carlo Plan-
ning”, when Kocsis and Szepesvári proposed a new, adaptive, randomized optimiza-
tion algorithm [KS06]. In the same year, it was followed by Rémi Coulom in present-
ing “Efficient selectivity and backup operators in Monte-Carlo tree search” in Turin
[Cou06]. After that, the time has arrived to collect the ideas in a framework for
MCTS by Chaslot et al. [CWvdH+08b]. In fields as diverse as Artificial Intelligence,
Combinatorial Optimization, and High Energy Physics (HEP), research has estab-
lished that MCTS can find approximate answers without domain-dependent heuristics
[KS06, KPVvdH13, Ver13]. The strength of the MCTS algorithm is that it provides an-
swers for any given computational budget [GBC16]. The amount of error can typically
be reduced by expanding the computational budget for more running time. Much ef-
fort has been put into the development of parallel algorithms for MCTS to reduce the
running time. The efforts have as their target a broad spectrum of parallel systems,
ranging from small shared-memory multi-core machines to large distributed-memory
clusters. The emergence of the Xeon Phi co-processor with over 61 simple cores has
extended this spectrum with shared-memory many-core processors. In this thesis, we
will study the parallel MCTS algorithms for multi-core and many-core processors.

This chapter is structured as follows. Section 1.1 introduces the HEPGAME project.
Section 1.2 explains briefly the MCTS algorithm. Section 1.3 discusses parallelism
and parallelization. Section 1.4 explains the general obstacles to the parallelization
of MCTS. Section 1.5 discusses performance and scalability. The scope and research
goals are mentioned in Section 1.6. The problem statement and five research ques-
tions are given in Section 1.7. Section 1.8 discusses the research methodology. Section
1.9 gives the structure of the thesis. Section 1.10 provides a list of contributions.



2 1.1. HEPGAME

1.1 HEPGAME

The work in the thesis is part of High Energy Physics Game (HEPGAME) project
[Ver13]. The HEPGAME project intends to use techniques from game playing for solv-
ing large equations in particle physics (High Energy Physics (HEP)) calculations. One
of these techniques is MCTS. Before the beginning of the project, it was clear that
without parallelization any algorithm based on MCTS cannot be useful. The main
prerequisite for the parallelization was that the algorithm should be executed in a
reasonable time when trying to simplify large equations. Therefore, our focus in this
research was on finding new methods to parallelize the MCTS algorithm. The multi-
threaded version of the FORM program (i.e., TFORM) [TV10] can use our findings.
FORM is open source software used for solving large High Energy Physics (HEP) equa-
tions. FORM has an optimization module which receives the main conclusions of our
research.

1.2 Monte Carlo Tree Search

The MCTS algorithm iteratively repeats four steps to construct a search tree un-
til a predefined computational budget (i.e., time or iteration constraint) is reached
[Cou06, CWvdH+08b]. Figure 1.2 shows the main loop of the MCTS algorithm and
Figure 1.1 shows an example of the search tree. At the beginning the search tree
has only a root node. Each node in the search tree is a state of the domain, and di-
rected edges to child nodes represent actions leading to the following states. Figure
1.3 illustrates one iteration of the MCTS algorithm on a search tree that already has
nine nodes. Circles represent the non-terminal and internal nodes. Squares show the
terminal nodes. The four steps are:

1. SELECT: A path of nodes inside the search tree is selected from the root node
until a non-terminal leaf with unvisited children is reached (v6). Each of the
nodes inside the path is selected based on a predefined selection policy. This
policy controls the balance between exploitation and exploration of searching
inside the domain [KS06] (see Figure 1.3a).

2. EXPAND: One of the children (v9) of the selected non-terminal leaf (v6) is gen-
erated randomly and added to the tree and also the selected path (see Figure
1.3b).

3. PLAYOUT: From the given state of the newly added node, a sequence of ran-
domly simulated actions is performed until a terminal state in the domain is



Chapter 1. Introduction 3

v0

v1

v4 v5

v8

v2 v3

v6 v7

Figure 1.1: An example of the search tree.

Select

Expand

Playout

Backup

Search tree

Stop

Is search
budget

finished?

no

yes

Figure 1.2: The main loop of MCTS.

reached, i.e., RANDOMSIMULATION. The terminal state is evaluated using a util-
ity function to produce a reward value ∆, i.e., EVALUATION (see Figure 1.3c).

4. BACKUP: In the selected path, each node’s visit count n is incremented by 1
and its reward value w updated according to ∆ [BPW+12]. These values are
required by the selection policy (see Figure 1.3d).

As soon as the computational budget is exhausted, the best child of the root node is
returned (e.g., the one with the highest number of visits).

1.3 Parallelism and Parallelization

In this thesis, we aim at parallelism, and we use parallelization as the act towards
parallelism. Doing more than one thing at the same time introduces parallelism. A
programmer has to find opportunities for parallelization in an algorithm and use par-
allel programming methods to write a parallel program. A parallel program uses the
parallel processing power of processors for faster execution.

Definition 1.1 (Parallelization) Parallelization is the act of transforming code to en-
able simultaneous activities. The parallelization of a program allows execution of (at
least parts of) the program in parallel.

Below we describe two types of parallelism: thread-level parallelization in Subsec-
tion 1.3.1 and task-level parallelization in Subsection 1.3.2.



4 1.3. Parallelism and Parallelization

v0

v1

v4 v5

v8

v2 v3

v6 v7

(a) SELECT

v0

v1

v4 v5

v8

v2 v3

v6

v9

v7

(b) EXPAND

v0

v1

v4 v5

v8

v2 v3

v6

v9

∆

v7

(c) PLAYOUT

v0

v1

v4 v5

v8

v2 v3

v6

v9

v7

∆

∆

∆

(d) BACKUP

Figure 1.3: One iteration of MCTS.

1.3.1 Thread-level Parallelization

The first choice for doing parallel programming is to use software threads, such as
POSIX threads, usually referred to as pthreads. It enables a program to control mul-
tiple different flows of work that overlap in time. Each flow of work is seen as a
thread; creation and control over threads are achieved by making calls to the API
(e.g., pThreads). Here we remark that the use of software threads in parallel pro-
gramming is considered as equivalent to writing in assembly language [JR13]. A
multi-core processor consists of multiple cores that execute at least one independent
software thread per core through duplication of hardware. A multithreaded or hy-
perthreaded processor core will multiplex a single core to execute multiple software
threads through interleaving of software threads via hardware mechanisms. A com-
putation that employs multiple software threads in parallel is called thread parallel
[MRR12]. This type of parallelization is what we call thread-level parallelization.

Definition 1.2 (Thread) A thread is any software unit of parallel work with an inde-
pendent flow of control.

Definition 1.3 (Multi-core Processor) A multi-core processor is a single chip that con-
tains multiple core processing units, more commonly known as cores.

1.3.2 Task-level Parallelization

To use task-level parallelization, a programmer should program in tasks, not threads
[Lee06]. Threads are a mechanism for executing tasks in parallel, and tasks are units
of work that merely provide the opportunity for parallel execution; tasks are not
themselves a mechanism of parallel execution [MRR12]. For a proper definition, see
below.

Definition 1.4 (Task) A task is a logical unit of potential parallelism with a separate
flow of control.



Chapter 1. Introduction 5

Tasks are executed by scheduling them onto software threads, which in turn the
operating system schedules onto hardware threads. Scheduling of software threads
onto hardware threads is usually preemptive (i.e., it can happen at any time). In
contrast, scheduling of tasks onto software threads is typically non-preemptive (i.e., a
thread switches tasks only at predictable switch points). Non-preemptive scheduling
enables significantly lower overhead and stronger reasoning about space and time
requirements than preemptive scheduling [JR13]. A computation that employs tasks
over threads is called task parallel. This type of parallelization is what we call task-
level parallelization. It is the preferred method of parallelism, especially for many-core
processors.

Definition 1.5 (Many-core Processor) A many-core processor is a specialized multi-
core processor designed for a high degree of parallel processing, containing a large num-
ber of simpler, independent processor cores.

In the task-level parallelization, the programmer should expose parallelism and
share the opportunities for parallelization as tasks, but the work to map tasks to
threads should not be encoded into an application. Hence, do not mix the concept
of exposing tasks with the effort to allocate tasks to threads. The later causes inflex-
ibility in scaling on different and future hardware. Hence, we are creating tasks and
give the job of mapping tasks onto hardware to a parallel programming library, such
as Threading Building Blocks (TBB) [Rei07] and Cilk Plus [Suk15].

The task-level parallelization is also tightly coupled with parallel patterns. A pat-
tern is a recurring combination of data and task management, separate from any
particular algorithm [MRR12]. The parallel patterns are not necessarily tied to any
particular hardware architecture or programming language or system. Parallel pat-
terns are essential for efficient computations of tasks.

Definition 1.6 (Parallel Pattern) A parallel pattern is a recurring combination of task
distribution and data access that solves a specific problem in parallel algorithm design
[MRR12].

Parallel patterns are often composed with, or generalized from, a set of serial pat-
terns. The serial patterns are the foundation of structured programming. The pattern-
based approach to parallel programming can be considered an extension of the idea
of structured programming [MRR12].

1.4 General Obstacles for Parallelization of MCTS

Since its inception, MCTS was the subject of parallelization, and several paralleliza-
tion methods have been developed for it [CWvdH08a, CJ08, EM10, SKW10, SHM+16].



6 1.4. General Obstacles for Parallelization of MCTS

This trend comes from the fact that MCTS usually needs a large number of iterations
to converge, and every iteration can be executed in parallel. Therefore, MCTS has suf-
ficient potential for parallelization in theory, and it even seems to be straightforward.
However, a closer look reveals that there are four obstacles to achieve parallelism:
(1) irregular parallelism, (2) shared data structure, (3) data dependencies, and (4)
complex interactions among obstacles. If we are not able to overcome these obsta-
cles, the consequence will be four types of overhead, respectively: (1) load balancing
overhead, (2) synchronization overhead, (3) search overhead, and (4) deployment
overhead. In the following, we will explain these obstacles and what type of over-
head they cause. Each of the subsections below introduces the necessary techniques
for dealing with these obstacles.

1.4.1 Irregular Parallelism Causes Load Balancing Overhead

The first obstacle is irregular parallelism. Parallel algorithms with irregular paral-
lelism suffer from a lack of load balancing over processing cores. MCTS constructs
asymmetric search trees because the selection policy in MCTS allows the algorithm
to favor more promising nodes (exploitation), leading to a tree with unbalanced
branches over time [BPW+12]. Parallel execution of the algorithm with such a search
tree results in irregular parallelism because one thread traverses a shorter branch
while the other one works on a longer one. Chapter 4 provides more details and tries
to handle this obstacle.

Definition 1.7 (Irregular Parallelism) In irregular parallelism, the units of possible
parallel work in this type of parallelism are dissimilar in a way that creates unpredictable
dependencies.

Definition 1.8 (Load Balancing) Load balancing is a method used to allocate work-
loads uniformly across multiple computing resources, such as computing cores, to im-
prove the distribution of workloads.

1.4.2 Shared Data Structure Causes Synchronization Overhead

The second obstacle for parallelizing MCTS is a shared search tree. A parallel al-
gorithm with a shared data structure suffers from synchronization overhead when it
utilizes locks for data protection. Locks are notoriously bad for parallel performance
because other threads have to wait until the lock is released. Moreover, locks are often
a bottleneck when many threads try to acquire the same lock. The MCTS algorithm
uses a tree data structure for storing the states of the domain and guiding the search
process. The basic premise of a search tree in MCTS is relatively simple: (A) nodes are



Chapter 1. Introduction 7

added to the tree in the order in which they were expanded. (B) nodes are updated in
the tree along with the order in which they were selected. In parallel MCTS, parallel
threads are manipulating a shared search tree concurrently, and locks are required
for data protection. It seems that we should have synchronization without using locks
to avoid synchronization overhead. In Chapter 5, we show how we deal with this
obstacle.

Definition 1.9 (Shared Data Structure) A shared data structure, also known as a
concurrent data structure, is a particular way of storing and organizing data that can be
accessed by multiple threads simultaneously on a shared-memory machine.

Definition 1.10 (Synchronization) Synchronization is the coordination of tasks or
threads to obtain the desired runtime order [Wil12].

1.4.3 Ignoring Data Dependencies Causes Search Overhead

The third obstacle that should be addressed is the data dependencies. We find two
types of data dependencies in MCTS: (1) the data dependency that exists among it-
erations and (2) the data dependency that exists among operations. The first type of
data dependency exists because each of the iterations in the main loop of the algo-
rithm requires the updated data which should be provided by its previous iterations.
This type of data dependency is also known as loop carried data dependencies. Ignoring
this type of data dependency causes search overhead. The second type of data depen-
dency exists because each of the four operations inside each iteration of the algorithm
depends on the data that is provided by the previous operation. Ignoring this type of
data dependency is not possible for obvious reasons. Chapter 6 provides more details
and our solution for overcoming this obstacle.

Definition 1.11 (Loop Carried Data Dependency) A loop carried data dependency
exists when a statement in one iteration of a loop depends in some way on a statement
in a different iteration of the same loop.

Definition 1.12 (Loop Independent Data Dependency) A loop independent data de-
pendency exists when a statement in one iteration of a loop depends only on a statement
in the same iteration of the loop.

Definition 1.13 (Search Overhead) Search overhead exists in the MCTS algorithm
when the number of nodes searched by a parallel algorithm is more than that of the
serial algorithm.



8 1.5. Performance and Scalability Studies

1.4.4 Complex Interactions Leading to Deployment Overhead

The fourth obstacle is the complexity of addressing the three above mentioned ob-
stacles together. Trying to address all of them at once is difficult, due to the interac-
tions among them. The overhead caused by complex interactions is called deployment
overhead. The level of complexity forced the researchers to make compromises when
solving some of these obstacles to have a parallel implementation of MCTS. In this
research, we aim to mitigate the deployment overhead through structured parallel
programming.

Definition 1.14 (Complex Interactions) Complex interactions refer to the relation-
ships among the general obstacles for parallelization of MCTS.

Definition 1.15 (Deployment Overhead) Deployment overhead is the amount of time
spent to deploy an algorithm in a hardware environment.

1.5 Performance and Scalability Studies

MCTS works by selectively building a tree, expanding only branches it deems worth-
while to explore [Cou06, AHH10, vdHPKV13]. The algorithm can converge to an op-
timal solution using a large number of playouts. It means that the algorithm requires
more computation and memory to converge as the number of playouts increases. It
leads to two distinct goals. The first and ultimate goal of parallelization is improving
the performance of the parallelized application. The performance could be measured
differently depending on the context in which it is used. In the context of MCTS, we
measure performance by two different terms: (A) in terms of runtime (i.e., playout
speedup), and (B) in terms of search quality (i.e., playing strength).

Definition 1.16 (Performance Study) A performance study for the parallel MCTS al-
gorithm on shared-memory systems examines where the performance of the paralleliza-
tion of MCTS is guided by a certain number of cores and a certain amount of memory
for one specific performance metric such as the number of Playouts per Second (PPS) or
the Percentage of Wins (PW).

Definition 1.17 (Playout Speedup) Playout speedup is the improvement in the speed
of execution.

Definition 1.18 (Playing Strength) Playing strength is the achieved performance com-
pared to a standard rating.



Chapter 1. Introduction 9

Adding more computing power and memory makes the process faster only if a
scalable parallelization of the algorithm exists to harness the additional resources.
Therefore, the second goal of parallelization is scalability. It will let the MCTS algo-
rithm converge faster to a solution. By scalability, we mean that when we increase
the number of cores and memory bandwidth, it results in improved performance in a
manner proportional to the resources added. Being scalable is the main idea behind
many parallelization methods for the MCTS algorithm on shared-memory machines
[CWvdH08a, EM10, SKW10, SHM+16].

Definition 1.19 (Scalability Study) A scalability study for parallel MCTS on shared-
memory systems refers to how the performance of parallelization of MCTS changes given
the increase of the number of cores and the amount of memory.

Definition 1.20 (Memory Bandwidth) Memory bandwidth is the rate at which data
can be read from or stored into memory by a processor. Memory bandwidth is usually
expressed in units of bytes per second.

1.6 Scope and Research Goals

Our research handles and investigates parallel systems. To understand later design
and implementation decisions as well as evaluation results, it is necessary to explain
the scope in which the research is conducted.

Concerning the scope, we see that two major types of parallel architectures are
prevailing in the industry: (A) shared-memory architecture and (B) distributed-memory
architecture. Among these two principal types, the shared-memory architecture is of
our main concern. Therefore, we concentrate on developing algorithms and finding
solutions for shared-memory machines only. In passing, we remark that studies with
a focus on distributed-memory systems [SP14, YKK+11] may benefit from our ex-
aminations, since our findings might be indirectly useful for the distributed-memory
community of research. The explanation is that shared-memory machines are build-
ing blocks for distributed-memory systems.

The shared-memory architecture also has two types: (A1) Uniform Memory Access
(UMA) and (A2) Non Uniform Memory Access (NUMA). We are interested in both of
these architectures. In the UMA shared-memory architecture, each processor must use
the same shared bus to access memory. Here we note that the access time remains the
same despite which shared-memory module contains the data to be retrieved. The
Phi co-processor has an UMA-based many-core architecture called Many Integrated
Core (MIC). In the NUMA architecture, each processor has direct access to its local
memory module. At the same time, it can also access any remote memory module



10 1.7. Problem Statement and Research Questions

belonging to another processor using a shared interconnect network. The outcome of
having many memory modules is that memory access time varies with the location
of the data to be accessed. Each processor in a NUMA machine is multi-core. In the
thesis, our goal is to work with both NUMA-based multi-core systems and UMA-based
many-core systems for both the design and the implementation of the algorithms.

Definition 1.21 (Uniform Memory Access) A Uniform Memory Access refers to a mem-
ory system in which the memory access time is uniform across all processors.

Definition 1.22 (Many Integrated Core) A Many Integrated Core is an UMA-based
many-core architecture designed for highly parallel workloads. The architecture empha-
sizes higher core counts on a single die, and simpler cores, than on a traditional CPU.

Definition 1.23 (Non Uniform Memory Access) A Non Uniform Memory Access is a
system in which certain banks of memory take longer to access than others, even though
all the memory uses a single address space.

1.7 Problem Statement and Research Questions

The MCTS algorithm is a good candidate for parallelization. This has been known
since the introduction of the algorithm in 2006 [Cou06, KS06, EM10]. However, until
now, the research community has only used thread-level parallelization when paral-
lelizing the algorithm. The current parallel programming approaches are unstructured
and do not use modern parallel programming patterns, languages, and libraries. We
aim to address the complications of designing parallel algorithms for MCTS using
the modern techniques, tools, and machines which are discussed above. We focus on
both NUMA and MIC architectures to evaluate our implementations. Therefore, the
Problem Statement (PS) of the thesis is as follows.

• PS: How do we design a structured pattern-based parallel programming ap-
proach for efficient parallelism of MCTS for both multi-core and many-core
shared-memory machines?

We define five specific research questions (RQs) derived from the PS that we try to
answer in the following chapters. We will describe the five research questions below.

Thread-level parallelization: Until now, the research community has only used
thread-level parallelization when parallelizing MCTS. However, today, the NUMA-
based multi-core and UMA-based many-core architectures are very important. These
are the architectures that we will use in our experiments. We believe that thread-
level parallelization is not anymore a suitable method for the many-core processors.



Chapter 1. Introduction 11

Therefore, it is important to know the performance of the thread-level parallelization
on the new architectures. It leads us to the first research question.

• RQ1: What is the performance and scalability of thread-level parallelization for
MCTS on both multi-core and many-core shared-memory machines?

Task-level parallelization: One of the essential developments in parallel program-
ming methods is the use of task-level parallelization. In task-level parallelization,
calculations are partitioned into tasks, rather than spread over software threads. The
use of task-level parallelization has three benefits: (1) it is conceptually simpler, (2)
it may make the development of parallel MCTS programs easier, and (3) it leads to
more efficient scheduling of CPU time. These benefits lead us to the second research
question.

• RQ2: What is the performance and scalability of task-level parallelization for
MCTS on both multi-core and many-core shared-memory machines?

A lock-free data structure: MCTS requires a tree data structure. For efficient par-
allelism, this tree data structure must be lock-free. The existing lock-free tree data
structure is inconsistent; i.e., it suffers from loss of information during the search
phase. We are interested in developing a lock-free tree data structure for use in par-
allelized MCTS, in such a way that it avoids loss of information and simultaneously
improves the speed of MCTS execution. This leads us to the third research question.

• RQ3: How can we design a correct lock-free tree data structure for parallelizing
MCTS?

Patterns for task-level parallelization: Task-level parallelization requires specific
patterns by which the tasks are processed. Modern parallel libraries and languages
support these patterns, thereby allowing quick construction of parallel programs that
have these patterns. It may be possible to apply one or more patterns in the paral-
lelization of MCTS. We are interested in (1) finding these patterns, and (2) using
them in the parallelization of MCTS. This leads us to the fourth research question.

• RQ4: What are the possible patterns for task-level parallelization in MCTS, and
how do we use them?

Improving search quality of MCTS: It has been shown that the parallelization of
MCTS leads to a decrease in the quality of search results. Various solutions have
been developed that attempt to mitigate this decrease in quality. We are interested in



12 1.8. Research Methodology

finding out to what extent the existing solutions apply to the parallelized MCTS that
we will develop in this thesis. This leads us to the fifth research question.

• RQ5: To what extent do the existing solutions which improve search quality, apply
to our version of parallelized MCTS?

By the existing solutions, we mean two methods: (1) ensemble methods, and (2)
virtual loss.

1.8 Research Methodology

For answering a research question, our research methodology consists of four phases:

• The first phase is characterized by collecting knowledge on existing methods
and algorithms. It is performed by reading to some extent, the existing literature
and becoming familiar with the existing tools.

• The second phase is investigating the performance of the existing methods,
tools, and techniques for parallelizing MCTS.

• The third phase is designing new ideas and algorithms. Then, the implementa-
tion of these designs takes place in a new software framework.

• In the fourth phase, an experiment is executed, and the results are collected,
interpreted, analyzed, and reported.

1.9 Structure of the thesis

The problem statement and the five research questions introduced in Section 1.7 are
addressed in eight chapters. Below we provide a brief description of the contents of
each chapter.

Chapter 1 introduces the Monte Carlo Tree Search algorithm and defines the con-
cepts of parallelism and parallelization. Then, it gives four general obstacles for paral-
lelization of MCTS: load balancing, synchronization overhead, search overhead, and
deployment overhead. After that, the chapter gives the definitions for performance
and scalability and provides the scope of research. Then, it formulates the problem
statement, five research questions, and the research methodology. Finally, it lists our
contributions.



Chapter 1. Introduction 13

Chapter 2 provides the necessary background for the rest of the thesis. It discusses
the benchmark problems, the parallelization methods for MCTS, the performance
metrics, and our Upper Confidence Bounds for Trees (UCT) parallelization software
package.

Chapter 3 answers RQ1. The chapter provides, to the best of our knowledge, the
first performance and scalability study of non-trivial MCTS programs on the Intel
Xeon Phi.

Chapter 4 answers RQ2. The chapter investigates how to parallelize irregular and
unbalanced tasks in MCTS efficiently on the Xeon Phi.

Chapter 5 answers RQ3. The chapter proposes a new lock-free tree data structure
for parallel MCTS.

Chapter 6 answers RQ4. The chapter proposes a new algorithm based on a Pipeline
Pattern for Parallel MCTS.

Chapter 7 answers the first part of RQ5. The chapter shows that balancing between
the exploitation-exploration parameter and the tree size can be useful in Ensemble
UCT to improve its performance.

Chapter 8 answers the second part of RQ5. The chapter evaluates the benefit of us-
ing the virtual loss in lock-free (instead of locked-based) Tree Parallelization. Hence,
it addresses the trade-off between search overhead and efficiency.

Chapter 9 concludes the thesis with a summary of the answers to what has been
achieved with regards to the research questions and the problem statement, formu-
lates conclusions, describes limitations and shows possible directions for future work.

1.10 Contributions

Below we list six contributions of our research. There are three main contributions (1
to 3) and three technical contributions (4 to 6).

1. The use of many-core machines for studying the performance and scalability of
MCTS (see Chapter 2 and 3).

2. The use of task-level parallelization for MCTS (see Chapter 4).



14 1.10. Contributions

3. The design of a lock-free data structure for parallel MCTS (see Chapter 5)

4. The introduction of a pipeline pattern for parallel MCTS (see Chapter 6).

5. We established a balance for the trade-off between exploitation-exploration for
Root Parallelization (see Chapter 7).

6. By using lock-free parallelization, a virtual loss does not bring any improvement
in search quality for a Horner Scheme (see Chapter 8).


