QUANTUM POINT CONTACTS

Punctuated equilibrium, the notion that evolution in nature is stepwise rather than continuous, sometimes applies to evolution in science as well. The seed of a scientific breakthrough may slumber for a decade or even longer without generating much interest. The seed may be a theoretical concept without clear predictions to test experimentally, or an intriguing but confusing experiment without a lucid interpretation. When the seed finally germinates, an entire field of science can reach maturity in a few years.

Although we did not know it at the time, the slumbering-seed process was well under way when, a decade ago, the two of us, as newly hired PhDs at Philips Research Laboratories in Eindhoven, ventured into the field of quantum ballistic transport. Together with Bart van Wees, then a graduate student at Delft University, and Carlo Beenakker, then a graduate student at Leiden University, we were confronted with some pretty vague challenges.

On the experimental side, there was the search for evidence of quantum interference in the transmission of electrons through a constriction, a clear-cut manifestation of the quantum mechanical wave character of conductance electrons. Experiments on narrow silicon transistors at Yale University and AT&T Bell Laboratories had come close, but suffered from irregularities owing to disorder. (These irregularities would become known as universal conductance fluctuations; see PHYSICS TODAY, December 1988, page 36.) We anticipated that the electron motion would need to be ballistic—that is, without scattering by impurities. Moty Heiblum of IBM in Yorktown Heights, New York; he had proposed that "conduction is transmission" between reservoirs that are maintained at different electrochemical potentials.

Landauer's formula, a relationship between conductivity and transmission probability, evolved into two versions. One gave infinite conductance (zero resistance) in the absence of impurity scattering (transmission probability one), and the other gave a finite answer. Although the origin of the difference between the two versions was understood by at least one of the theorists involved in the debate, the experimental implications remained unclear.

Looking back ten years later, we find that the seed planted by Landauer in the 1950s has developed into a sophisticated theory that forms the basis of the entire field of quantum ballistic transport. The breakthrough can be traced back to experiments on an elementary conductor: a point contact. In this article, we present a brief account of these developments. (For a more comprehensive and detailed discussion, we direct readers to the reviews cited in the references.)

Quantized conductance

The history of ballistic transport goes back to 1965, when Yuri Sharvin at the Academy of Sciences of the USSR in Moscow used a pair of point contacts to inject and detect a beam of electrons in a single-crystalline metal. In such experiments the quantum mechanical wave character of the electrons does not play an essential role, because the Fermi wavelength ($\lambda_F = 0.5$ nm) is much smaller than the opening of the point contact. The two-dimensional electron gas in a GaAs–AlGaAs heterojunction has a Fermi wavelength that is a hundred times larger than in a metal. This property makes it possible to study a constriction with an opening comparable to the wavelength (and much smaller than the mean free path for impurity scattering). Such a constriction is called a quantum point contact.

Henk van Houten and Carlo Beenakker

The quantization of ballistic electron transport through a constriction demonstrates that "conduction is transmission."

Henk van Houten is the head of the department of exploratory physics at Philips Research Laboratories in Eindhoven and a professor of physics at Leiden University, in The Netherlands. Carlo Beenakker is a professor of physics at Leiden University.
Digital Technology Ends Analog Trade-Offs

Optimum Resolution, Throughput, and Stability All Rolled into One

DSPEC Processes More Samples, at Lower Cost per Sample

From Our Science Correspondent

From scientists performing environmental measurements to those involved in on-line industrial measurements, the question has been repeatedly posed: "Why can't one system provide the absolute best in resolution, throughput, and stability simultaneously? Why do we always have to make less-than-ideal electronic compromises when the detector is innately capable of better performance?" Until now, these questions remained unanswered. Now DSPEC provides the answers.

In Environmental Counting, DSPEC provides extremely high stability over long counting times. DSPEC solves the ballistic deficit problem which often degrades the resolution of large HPGe detectors. It delivers the best resolution of which any detector is capable. A statistical preset allows one to set multiple presets, such as "Stop counting when the precision of the 1.33 MeV peak reaches 5% or when there are 1000 total counts in that peak." This maximizes sample throughput, and delivers lower cost per sample. DSPEC is highly automated, ending the need to use screwdriver or oscilloscope to achieve the best performance. In recognition of non-laboratory conditions in many counting rooms, DSPEC provides unprecedented temperature stability for varying ambient temperatures.

For applications involving high count rates or widely varying count rates - such as intermediate-level waste measurement or post accident sampling - DSPEC has unmatched count-rate stability for both peak position and resolution.

For industrial applications and for Local Area Networks, DSPEC's built-in Ethernet port allows direct connection to the network. No other integrated instrument provides this.

Those wanting to wring the last drop of performance from their detector will appreciate the utility of the built-in InSight™ "Virtual Oscilloscope," which allows precise optimization by displaying the synthesized internal digital "waveforms."

DSPEC at Analytica Improves Resolution of 170% Efficiency Detector

From our Munich Correspondent

DSPEC was the star of the show at Analytica in Munich. With dozens of scientists crowding about, eagerly anticipating its arrival, DSPEC made its appearance.

One well-known physicist quipped, "Well, this will be quite a test for you ORTEC fellows . . . we won't give you even one minute to set it up."

DSPEC was removed from the shipping container and connected to an ORTEC 170% Ge detector. A single push on the "Optimize button" delivered a resolution at 661 keV that was 100 eV superior to what had previously been obtained using analog electronics. The audience oohed and aahed.

DSPEC Has No Competition

The Data Speaks with Digital Clarity

From our Correspondent in Boolean

The following comparison of DSPEC to the world's best analog spectroscopy electronics shows DSPEC unsurpassed in every aspect of resolution, throughput, and stability:

<table>
<thead>
<tr>
<th>DSPEC Optimized for Resolution</th>
<th>Leading High-Resolution Analog System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Shift (1 to 140 kcps input, at 1332 keV)</td>
<td>165 ppm 6000 ppm</td>
</tr>
<tr>
<td>Resolution @1000 cps (at 1332 keV)</td>
<td>1.75 keV 1.77 keV</td>
</tr>
<tr>
<td>Resolution Degradation (from 1 kcps to 75 kcps input)</td>
<td>9% 38%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DSPEC Optimized for Throughput</th>
<th>Leading High-Throughput Analog System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Throughput (1 to 140 kcps input)</td>
<td>62,000 57,000</td>
</tr>
<tr>
<td>Peak Shift (1 to 140 kcps input, at 1332 keV)</td>
<td>85 ppm 100 ppm</td>
</tr>
<tr>
<td>Resolution Degradation (1 kcps to 140 kcps input)</td>
<td>2% 14%</td>
</tr>
</tbody>
</table>

Yesterday's Baseball Scores

8 to 5, 7 to 1, 6 to 3, 4 to 0, 11 to 2.

EG&G ORTEC 800-251-9750

FAX: 423-483-0396

E-Mail: 709-6992@MCIMAIL.COM

Circle number 15 on Reader Service Card
In a metal a point contact is fabricated simply by pressing two wedge- or needle-shaped pieces of material together. A quantum point contact requires a more complicated strategy because the two-dimensional electron gas is confined at the GaAs—AlGaAs interface in the interior of the heterojunction. A point contact of adjustable width can be created in this system using the split-gate technique developed by the groups of Michael Pepper at the University of Cambridge and Daniel Tsui at Princeton University.

The gate is a negatively charged electrode on top of the heterojunction, which depletes the electron gas beneath it. (See figure 1.) In 1988 the Delft—Philips and Cambridge groups reported the discovery of a sequence of steps in the conductance of a constriction in a two-dimensional electron gas, as its width, \(W \), was varied by means of the voltage on the gate.\(^6\) (See PHYSICS TODAY, November 1988, page 21.) As shown in figure 1, the steps are near-integer multiples of \(2e^2/h \), or about 1/13kΩ, after correction for a small series resistance independent of gate voltage.

An elementary explanation of the quantization views the constriction as an electron waveguide, through which a small integer number, \(N = 2W/\lambda_F \), of transverse modes can propagate at the Fermi level. The wide regions at opposite sides of the constriction are reservoirs of electrons in local equilibrium. A voltage difference, \(V \), between the reservoirs induces a current, \(I \), through the constriction, equally distributed among the \(N \) modes. This equipartition rule is not immediately obvious because electrons at the Fermi level in each mode have different group velocities, \(v_n \).

However, the difference in group velocity is canceled by the difference in density of states, \(\rho_n = 1/hv_n \). As a result, each mode carries the same current, \(I_n = Ve^2/\rho_n \). Summing over all modes in the waveguide, one obtains the conductance, \(G = I/V = Ne^2/h \). The experimental step size is twice \(e^2/h \) because spin-up and spin-down modes are degenerate.

The electron waveguide has a nonzero resistance even though there are no impurities, because reflections occur when a small number of propagating modes in the waveguide is matched to a larger number of modes in the reservoirs. A thorough understanding of this mode-matching problem is now available, thanks to the efforts of many investigators.\(^5\)

The quantized conductance of a point contact provides firm experimental support for the Landauer formula

\[
G = \frac{2e^2}{h} \sum_n t_n
\]

for the conductance of a disordered metal between two electron reservoirs. The numbers \(t_n \), between 0 and 1, are
the eigenvalues of the product tt^\dagger of the transmission matrix, t, and its Hermitian conjugate. For an "ideal" quantum point contact, N eigenvalues are equal to 1 and all others are 0. Deviations from exact quantization in a realistic geometry are about 1%. This value can be contrasted with the quantization of the Hall conductance in strong magnetic fields, where an accuracy better than 1 part in 10^7 is obtained routinely. One reason why a similar accuracy cannot be achieved in zero magnetic field is the series resistance from the wide regions, whose magnitude cannot be determined precisely.

Another source of excess resistance is quantum mechanical reflection at the entrance and exit of the constriction, due to the abrupt widening of the geometry. A magnetic field perpendicular to the electron gas suppresses this backscattering, improving the accuracy of the quantization.

Suppression of backscattering by a magnetic field is the basis of the theory of the quantum Hall effect developed by Marcus Buttiker of IBM in Yorktown Heights, New York. Buttiker’s theory uses a multireservoir generalization of the two-reservoir Landauer formula. The propagating modes in the quantum Hall effect are the magnetic Landau levels interacting with the edge of the sample. (Classically, these magnetic edge states correspond to the skipping orbits discussed later.) There is a smooth crossover from zero-field conductance quantization to the quantum Hall effect, corresponding to the smooth crossover from zero-field waveguide modes to magnetic edge states.

When 1 mode = 1 atom

Because the conductance quantum, e^2/h, contains only constants of nature, the conductance quantization might be expected to occur in metals as well as in semiconductors. A quantum point contact in a semiconductor is a mesoscopic object, on a scale intermediate between the macroscopic world of classical mechanics and the microscopic world of atoms and molecules. This separation of length scales exists because of the large Fermi wavelength in a semiconductor. In a metal, on the contrary, the Fermi wavelength is of the same order of magnitude as the atomic separation. A quantum point contact in a metal is therefore necessarily of atomic dimensions.

If the initial contact between two pieces of metal is formed by a single atom, the conductance will be of the order of $2e^2/h$. This was first observed in 1987 by James K. Gimzewski and R. Moller of IBM’s Zurich Research Laboratory, in experiments in which the iridium tip of a scanning tunneling microscope was pressed onto a silver wire. The graph in b shows quantized steps in the sodium atomic-size point contact. The experiment is not fully reproducible, as shown by the four representative single measurements, because of varying atomic rearrangements in the contact region. (Adapted from ref. 10.)

Photons and Cooper pairs

The interpretation of conduction as transmission of electrons at the Fermi level suggests an analogy with the transmission of monochromatic light. The analog of the conductance is the transmission cross section, σ, defined as the transmitted power divided by the incident flux. The transmission cross section of a slit of variable width was measured by Edwin Montie and his coworkers at the Kamerlingh Onnes Laboratory in Leiden. An adjustable contact of atomic dimensions, with high mechanical stability, is made by bolting a notched wire of sodium onto a flexible substrate. As the substrate is bent, the wire breaks at the notch. The contact area can be controlled down to the atomic scale simply by bending the substrate more or less.

A statistical analysis of a large number of samples shows that, as the contact area is increased, steps in the conductance appear near one, three, five and six times $2e^2/h$. (Figure 2 shows the conductance steps for representative single measurements.) The absence of steps at two and four times $2e^2/h$ is significant, and has a neat explanation: In a cylindrically symmetric potential, the second and third transverse modes are degenerate, as are the fourth and fifth, while the first and sixth are nondegenerate.

The energy separation of transverse modes in a point contact of atomic dimensions is so large that the conductance steps are visible at room temperature. Nicolás García and his group at the Autonomous University of Madrid have made use of this property to develop a classroom experiment on quantized conductance. (See PHYSICS TODAY, February, page 9.)
Thermal analogs

The conductance is the coefficient of proportionality between current and voltage. The additional presence of a small temperature difference, δT, across the point contact gives rise to a matrix of coefficients:

$$
\begin{pmatrix}
\text{electrical current} \\
\text{heat current}
\end{pmatrix} = \begin{pmatrix} G & L \\ L' & K \end{pmatrix} \begin{pmatrix} -V \\ \delta T \end{pmatrix}
$$

The thermal conductance, K, relates heat current to temperature difference. The thermoelectric cross-phenomena are described by coefficients L and L'. As first deduced by William Thomson (Lord Kelvin), time-reversal symmetry requires that $L' = -L$ at a temperature T.

The two new transport coefficients K and L can be expressed in terms of the transmission probabilities, just like the electrical conductance, G. Approximately, $K \propto t$ and $L \propto d\tau / dE_F$, where $t = \sum_{\tau} t_{\tau}$ is the total transmission probability at the Fermi energy, E_F. (The proportionality of K to t, and hence to G, is the Wiedemann–Franz law of solid-state physics.) The stepwise energy dependence of the transmission probability through a quantum point contact implies two types of quantum-size effects: steps in K and peaks in L. Both effects have been observed by Laurens Molenkamp and his coworkers at Philips.14

The thermal conductance, K, of a quantum point contact exhibits steps when the gate voltage is varied, aligned with the steps in the electrical conductance. Each step signals the appearance of a Fermi level mode that can propagate through the constriction. A step in the transmission probability leads to a peak in the thermoelectric transport coefficient, L. Pavel Středa14 at the Institute of Physics in Prague has calculated that, at zero temperature, the height of the peaks in L is approximately k/e times the conductance quantum e^2/h. The unit k/e, which is about 50 μV/K, is the entropy production per Coulomb of charge transferred through the point contact, or $1/e$ times the entropy carried by a single conduction electron, which is on the order of the Boltzmann constant, k.14

Figure 3 shows measurements of the thermopower $S = -L/G$ of a quantum point contact.14 (The thermopower is proportional to the voltage produced by a temperature difference for zero electrical current.) The coincidence of peaks in the thermopower with steps in the conductance (measured for the same point contact) is clearly visible. Joule heating was used to create a temperature difference across the point contact in this work. A more recent experiment used local heating by a focused beam of far-infrared radiation.15

Shot noise

The electrical current through a point contact is not constant in time, but fluctuates. The conductance determines only the time-averaged current. The noise power $P = 2|d\tau(0)\delta I(t)|^2$ at frequency ω is the Fourier transform of the correlator of the time-dependent fluctuations $\delta I(t)$ in the current at a given voltage V and temperature T. One distinguishes between equilibrium thermal noise ($V = 0, T \neq 0$) and nonequilibrium shot noise ($V \neq 0, T = 0$). Both types of noise have a white power spectrum—that is, the noise power does not depend on frequency over a very wide frequency range. Thermal noise is directly related to the conductance through the fluctuation–dissipation theorem ($P_\text{thermal} = 4kT/G$). Therefore, the thermal noise of a quantum point contact does not have a white power spectrum.
not give any new information.

Shot noise is more interesting because it contains information on the temporal correlation of the electrons, which is not contained in the conductance. Maximal shot noise ($P_{\text{max}} = 2eI$) is observed when the stream of electrons is fully uncorrelated. A typical example is a tunnel diode. Correlations reduce the noise power below P_{max}. One source of correlations, operative even for noninteracting electrons, is the Pauli principle, which forbids multiple occupation of the same single-particle state. A typical example is a ballistic point contact in a metal, where $P = 0$ because the stream of electrons is completely correlated by the Pauli principle in the absence of impurity scattering.

A quantum point contact in a two-dimensional electron gas has a different behavior. Using a Landauer-type formula, Gordey Lesovik at the Solid State Physics Institute in Chernogolovka, Russia, has predicted peaks in the shot noise at the steps in the conductance. The peak height $P_{\text{peak}} = eI$ is half the maximal value for uncorrelated electrons. The shot noise vanishes in between the steps. Michael Reznikov and his collaborators at the Weizmann Institute of Science in Rehovot, Israel, recently presented a convincing demonstration of this quantum-size effect in the shot noise. By going to microwave frequencies of 8-18 GHz, they avoided the "1/f noise" ubiquitous at lower frequencies.

Solid-state electron optics

The effects discussed so far refer to properties of the quantum point contact itself. A wealth of new phenomena has been discovered using a quantum point contact as a spatially coherent point source and detector, and specially formed electrodes as mirrors, prisms or lenses.

Figure 5 shows the basic experiment on coherent electron focusing. A point contact injects electrons with the Fermi momentum p_F into the two-dimensional electron gas, in the presence of a perpendicular magnetic field B.

The electrons follow a "skipping orbit" along the boundary, moving in circular arcs of cyclotron diameter $d_c = 2p_F/eB$. Some of the electrons are collected at a second point contact, at a separation L from the first. The voltage measured at the collector is proportional to the transmission probability between the two point contacts. Valery S. Tsoi at the Solid State Physics Institute in Russia first used this focusing technique in a metal. The magnetic field acts as a lens, bringing the divergent trajectories at the injector together at the collector. The collector is at a focal point of the lens when L is a multiple of d_c, and hence when B is a multiple of $2p_F/eL$ (arrows in figure 5). For reverse magnetic fields the injected electrons are deflected away from the collector, so that no signal is generated.

Observation of peaks at the expected positions demonstrates that a quantum point contact acts as a monochromatic point source of ballistic electrons, and that the reflections at the boundary of the two-dimensional electron gas are specular. The fine structure on the focusing peaks is due to quantum interference of trajectories between the two point contacts. Such fine structure does not appear in metals. It demonstrates that the quantum point contact is a spatially coherent source and that the phase coherence is maintained over a distance of several micrometers to the collector.

Several research groups have used magnetic focusing to obtain information on the dynamics and scattering of quasiparticles in the two-dimensional electron gas. An intriguing application in the regime of the fractional quantum Hall effect is the focusing of composite fermions, which can be thought of as electrons bound to an even number of flux quanta.

In the regime of the integer quantum Hall effect, the geometry of figure 5 has been used to selectively populate and detect the magnetic edge states mentioned earlier. The observation of plateaus in the Hall conductance at anomalously quantized values provides support for the
Boundary of two-dimensional electron gas

MAGNETIC FOCUSING. a: Quantum point contacts are building blocks of solid-state electron optics. An example is electron focusing by a magnetic "lens." Electrons injected through one point contact (i) follow skipping orbits over a distance of 3 μm to a second point contact (c) acting as a collector. The two-dimensional electron gas boundary acts as a mirror, producing specular reflection. b: Magnetic focusing in a two-dimensional electron gas at 50 mK. The arrows indicate the positions of the focusing peaks expected when the point contact separation is a multiple of the cyclotron diameter. The fine structure on the peaks is due to quantum interference. (Adapted from ref. 17.) Figure 5

Ultimate confinement

A quantum point contact that is nearly pinched off (so that its conductance is less than $2e^2/h$) is a tunnel barrier of adjustable height for electrons near the Fermi level. This property has been used to inject and detect electrons in a small confined region of a two-dimensional electron gas, called a quantum dot. A quantum dot coupled to the outside by a pair of quantum point contacts has provided an ideal model system for the investigation of the effects of Coulomb repulsion on resonant tunneling. (See PHYSICS TODAY, January 1993, page 24.)

The zero-dimensional quantum dot forms the logical end to the reduction of dimensionality of the two-dimensional electron gas. As we have seen, the one-dimensional quantum point contact has played an important role in the conceptual development started by Landauer four decades ago. The concept of electrical conductance was conceived in the 19th Century, even before the electron was discovered. It is amusing that it required the sophisticated microelectronics technology of the late 20th century to demonstrate experimentally that "conduction is transmission."

References

1. For a historical account of the controversy, from two different perspectives, see R. Landauer, IBM J. Res. Dev. 32, 306 (1988);
Visit our new Physics Page on the World Wide Web at:

http://www.vchgroup.de/physics/

where you will find details of our comprehensive range of books and journals. Subjects covered range from condensed matter physics, through optics, statistical physics and nonlinear systems to astronomy and astrophysics, as well as such important areas as medical physics and biophysics.

Amongst other journals, VCH in Weinheim publishes Physikalische Blätter, the journal of the German Physical Society, and Akademie Verlag, Berlin, publishes physica status solidi, a major condensed matter physics journal.

For physica status solidi, visit our Physics Page for details of the journal's new Rapid Research Notes section.

Davis, H.T.
Statistical Mechanics of Phases, Interfaces, and Thin Films
Series: Advances in Interfacial Engineering
1996. XVI. 712 pages. 270 figures and 47 tables.
Hardcover. USS 95.00 £ 54.00 DM 135.00.

Schuster, H. G.
Deterministic Chaos
An introduction 3rd edition
Hardcover. USS 65.00 £ 52.00 DM 128.00.
ISBN 3-527-29088-5
Softcover. £ 29.50/DM 88.00.
ISBN 3-527-29315-9 (VCH. Weinheim)

Lübbig, H. (ed.)
The Inverse Problem
Symposium ad memoriam Hermann von Helmholtz
1995. 412 pages. 166 figures and 8 tables.
Hardcover. USS 70.00 £ 39.50 DM 98.00.
ISBN 3-05-501689-0 (Akademie Verlag. Berlin)

Porkampus, H.-H.
Encyclopedia of Spectroscopy
1995. VI. 669 pages. 431 figures and 45 tables.
Hardcover. USS 90.00 £ 52.00 DM 148.00.
ISBN 3-527-29281-0 (VCH. Weinheim)

Sahimi, M.
Flow in Porous Media and Fractured Rock
From Classical Methods to Modern Approaches
1995. XIV. 482 pages. 133 figures and 8 tables.
Hardcover. USS 65.00 £ 31.50 DM 98.00.
ISBN 3-527-29260-8 (VCH. Weinheim)

Awróbcwicz, J (ed.)
Nonlinear Dynamics: New Theoretical and Applied Results
1995. IV. 412 pages. 166 figures 3 in color and 8 tables.
Hardcover. USS 98.00 £ 48.00 DM 148.00.