47–73). Nor do mixed burials necessarily conflict with the practices of a religious community.

There is no excavated precedent for small monastic settlements in lowland Britain, and it seems highly likely in any case that the settlement structure would not be definitive. Tenth-century descriptions of Saxon monastic settlements lead us to expect both public and private buildings — little houses or cells for prayer and study, refectory, dormitory, kitchen and bakehouse for example (Cramp 1976: 208). This fits with the multiplicity of styles of building at Brandon and one might reasonably expect the rather haphazard disposition of buildings found in the Celtic models from northern Britain. Recent excavation at the Hartlepool Monastery has recovered buildings which are broadly comparable with the smaller of the building sizes at Brandon, and it has been suggested that at Hartlepool the proportion and density of these structures may be distinctive features of a planned monastic complex (Cramp & Daniels 1987: 425–8). The overall pattern displayed at Brandon, however, cannot be seen as distinctive; it might represent any type of settlement.

Excavation is expected to continue at least until the earthwork enclosure is uncovered. The existence of the Medieval chapel within the enclosure argues for continuity of use at the focus of the Saxon settlement, and the general trend of the settlement’s occupation pattern and the causeway argue that the focus of the whole site is on this, the highest and broadest part of the island in the area beneath the enclosure ditch. This must be regarded as the likely key to overall interpretation.

References
Cramp, R J & R. Daniels The Anglo-Saxon Monastery at Hartlepool, Cleveland, Antiquity 61 424–32
James, S, A Marshall & M Millett 1984 An Early Medieval building tradition, Archaeological Journal

A view of the Fens from the Low Countries

L.P. LOUWE KOOIJMANS*

David Hall. Fenland landscapes and settlement between Peterborough and March [East Anglian Archaeology 35]. x + 77 pages, 13 plates, 46 figures (many large and folding), 4 tables, microfiche 1987 Cambridge Cambridgeshire Archaeological Committee, £14 50 paperback

The editor of ANTIQUITY asked me to give some Dutch comments on the first volume of David Hall’s Fenland survey and on the total of the Fenland research in general. It is a little daring to say ‘yes’ to such a request. Certainly the Fenland and its archaeological values are very special for British eyes and seem to have much in common with the extensive Holocene (former) wetlands of the Low Countries, but after closer inspection the differences appear

* Rijksuniversiteit Leiden Archeologisch Centrum, Instituut voor Prehistorie, Postbus 9515, 2300 RA Leiden, Netherlands

just as large or even more dominant, and, after all, the single aspect both areas have in common seems merely that they are wet.

There can be no doubt that the efforts made by members of the Fenland Project mean the unveiling of the special and high archaeological values of this major English wetland, and that on various scales: regional as presented now by David Hall, microregional as in the case of Fengate and the Weiland Valley, and on the scale of individual sites, as in the case of Flag Fen, Etton and Haddenham, just to name the most spectacular ones. It seems most appropriate for this occasion to make some comparisons between the Fenland and Fen-edge data on environment, land-use patterns and systems on the one hand, and those attested for the Dutch wetlands on the other, and just experience what questions might arise. There will be real differences in geological evolution and land-use, but also in the archaeological interpretation and appreciation of comparable data.

From a geological and landscape-genetic point of view, both areas are quite different. First in extent: the Fenland is not larger than 20% of the Rhine/Meuse delta, that is the region south of the island of Texel. This is of importance, since distances might very well have played a role in the use of various landscapes by one community. But it seems of more importance that the Fenland is in essence a wide, shallow inland bay, penetrating hilly country, while the Dutch—north German coastal lowlands have a convex outline and are (and were) more open to marine incursions. Sedimentary and tidal conditions were different. Moreover, no large rivers like the Rhine, Meuse or Scheldt are flowing into the Fenland. So any extensive area of fluvial deposits or influx of clay in the peat zones is lacking, as are coastal barriers and dunes along the seaboard. Altogether, a comparison of the Fenland can better be made with the coastal area of Groningen, Friesland and northern Germany than with the typical delta environment of Holland in a strict sense.

But also the hinterland is quite different: on our part of the Continent it consists mainly of coversands, deposited over boulder-clay plateaus in the north, surrounding ice-pushed river sands and gravels in the centre, and terrace deposits in the south. This is in essence a very gentle sloping hinterland, as opposed to the hilly surroundings of the Fenland. Chalk upland, and its related lake marl deposits of the Fen meres, is unknown on the Continent, nor do we have these extents of low gravel terraces. Because of the low river gradients, gravels have not been deposited so far down the stream and they are covered by loam and coversand further upstream. This perfect crop-mark substratum is lacking in the Low Countries.

The early and high start of peat formation (as for instance at Shippea Hill) can be understood by impeded drainage and/or increased water inflow in the Early Holocene. The high sedimentation levels, as compared to Holland, can be understood by increased tidal amplitude in the estuaries and by the so-called gradient effect along the lower river courses. The differences in maximum sedimentation level are really striking:

<table>
<thead>
<tr>
<th>Fenland age</th>
<th>Holland age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terrington +3.0/2.5 Iron</td>
<td>Duinkerken I 0</td>
</tr>
<tr>
<td>Upper Barroway Drove +1.5 Bronze</td>
<td>Duinkerken 0 -1.0</td>
</tr>
<tr>
<td>Barroway Drove +0 5000/4000 BP</td>
<td>Calais III-IV -2.0</td>
</tr>
</tbody>
</table>

In a general sense the sedimentation sequences appear to run parallel; also the relative rise of sedimentation level is of the same order. This is of importance for palaeo-geographic reconstruction of the various phases. The continental zonation is, starting at the sea-board: coastal barriers with dunes, tidal flats, salt marshes, fossil freshwater marsh deposits, a zone of eutrophic peat with freshwater lakes (water blocked behind the high marsh deposits), and lastly raised (sphagnum) bogs. Modern as well as more modest former natural drainage caused inversion of relief, especially visible as creek-ridges (i.e. roddons).

This landscape zonation is nowhere existent any more because of embankment and artificial drainage. Only the seaward part of the sequence is still in active formation.

The zones which attracted occupation in the Rhine/Meuse delta from the Neolithic onward are especially the coastal dune ridge and the zone of fossil marsh deposits and that during the centuries following deposition, up till the time that peat formation started because of the rise of ground-water level. This is especially the case in Westfrisia (Bronze Age) and the
Friesland—Groningen—north German salt marshes (Iron Age), in the last area with the development of the impressive artificial village mounds (the terpen or Würfen) as a human response to deteriorating conditions.

Around the Wash a similar zonation of landscapes is reconstructed, but in the palaeogeography a 'brackish lagoonal' phase follows the apparent marsh sediments with their characteristic pattern of tidal creeks. This is a striking difference to the Dutch sequence as is also the quasi-total absence of finds and total absence of sites of the pre-Roman period from the Holocene depositional landscapes. Such sites are not easily discovered, especially where they are sealed below later clay sheets. Are they really absent and are environmental differences an explanation? It is only from Romano-British times that extensive settlement of the (Ter- rington) marsh beds is documented, by David Hall in Thorney parish, figures 33 and 45.

While Dutch and German wetland archaeology is really about settlement sites on and sealed in Holocene deposits of various facies – dune sand, tidal-creek deposits, peat, etc. – Fenland archaeology is about a reappearing prehistoric wetland margin landscape, preserved by a peat cover from later destruction, a narrow zone in height, between c. +3.5 and −1 m OD. The question arises to what extent this archaeological find pattern reflects a former locational preference or whether it might be mainly the result of the protective conditions, i.e. whether this pattern is primary or secondary. Silently only the first option is taken into consideration and explained, but we should not underestimate the destruction that took place outside this zone. Dutch archaeological mapping on a regional scale made us more and more aware that there are archaeological map formation processes – similar to site formation processes – which are scale-dependent. It became clear that on a topographical scale modern land-use, research intensity, geological cover and erosion govern archaeological site-patterns. Recovery processes and post-depositional processes dominate by far possible primary locational preferences. But there are good arguments to consider a fen-margin preference, especially in the results of the Fengate excavations. Such a preference also fits a similar preference for the wet margins of the upland zone attested on the Continent, for instance in the location of Celtic field systems on the coversands, in the Iron Age and Roman occupation along the southern edge of the river clay area and, perhaps, in the dense occupation of the Pleistocene core of the island of Texel and the Geest-insel of Flögeln. The major argument, in the continental cases, is the suitability of moderately wet sands for a primitive plough agriculture. The second is the possibility of profiting from both environments, the dry and the wet. In contrast to the Fenland, however, the peat zones are systematically considered as very swampy barriers, be it raised bog or alder carr. These are of no use for cattle-grazing and even difficult to pass through to the natural pasture land on the marshes, for the former existence of which there are good palaeobotanical arguments. In the models for the British fen-marginal agricultural strategy a high potential of the fen as a natural meadow and hayland is put forward. This seems to be rather in conflict with Hall’s palaeo-geographical reconstructions and sounds strange for continentalears. How strong are the palaeo- botanical arguments? Is this an essential difference with the continental situations or merely a difference in interpretation of similar data? An interesting point of similarity is the historical evidence from northern Germany, that raised bogs formerly blocked the vision lines between Geest-insel (Pleistocene outcrops). These bogs have now shrunk; prehistoric monuments, especially megaliths, are now reappearing, similar to the Fen-margin situation.

From a scientific point of view, wetland archaeology, like the present work in the Fenland, offers the opportunity to study human response to a landscape with rather extreme conditions. But there are more extraordinary qualities. We can observe this response through drastic environmental changes; we can split up occupation phases by means of natural Holocene stratigraphy; preservation compared to upland situations is always favourable. But there are also handicaps. People preferred to settle just on the dry spots within the wetland; the older occupation remains are often deeply covered; and we have at last to solve the difficult question as to how representative the wetland results are in a wider sense. This all makes the wetlands a very profitable scientific playground. From the point of view of Cultural Resource Management the importance of pro-
tection of former wetlands cannot be over-stressed. One of the major threats is the lowering of water tables and the resulting decay of wetland sites. The efforts of the Fenland Project are to be estimated of high value not only in respect of Britain but in a much wider scientific sphere, as my short comment might have shown. Wetland research on both sides of the North Sea might profit from the comparison of conflicting or confirming explanatory models for comparable situations.

Some references
GIJN A L VAN 1984 The colonisation of the salt marshes of Friesland and Groningen: the possibility of a transhumant prelude Palaeohistoria 26 101-22
HEERINGEN R M VAN 1986 De Late Bronstijd en de Vroege ijzertijd in de Nederlandse delta in M C van Trierum & H E Henkes (ed.) Rotterdam Papers 5 27-48
LOUWE KOOIJMANS L P 1980 Archaeology and coastal change in the Netherlands in H Thompson (ed.) Archaeology and coastal change 106-33 London Society of Antiquaries Occasional Paper 1
1985 Sporen in het land de Nederlandse delta in de prehistorie Amsterdam Meulenhoff 1987 Neolithic settlement and subsistence in the wetlands of the Rhine/Meuse delta of the Netherlands in Coles & Lawson (1987)

The ‘Fenland Slodger’ - personification of the Fenland Project. Field walks in the winter rain (overlooking a splendid spread of briquetage). Beneath is the Project’s Latin motto ‘It is solved by walking’